Skip to main content
Log in

Phylogenetic depth ofThermotoga maritima inferred from analysis of thefus gene: Amino acid sequence of elongation factor G and organization of theThermotoga str operon

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The gene (fus) coding for elongation factor G (EF-G) of the extremely thermophilic eubacteriumThermotoga maritima was identified and sequenced. The EF-G coding sequence (2046 bp) was found to lie in an operon-like structure between the ribosomal protein S7 gene (rpsG) and the elongation factor Tu (EF-Tu) gene (tuf). TherpsG, fus, andtuf genes follow each other immediately in that order, which corresponds to the order of the homologous genes in thestr operon ofEscherichia coli. The derived amino acid sequence of the EF-G protein (682 residues) was aligned with the homologous sequences of other eubacteria, eukaryotes (hamster), and archaebacteria (Methanococcus vannielii). Unrooted phylogenetic dendrogram, obtained both from the amino acid and the nucleotide sequence alignments, using a variety of methods, lend further support to the notion that the (present) root of the (eu)bacterial tree lies betweenThermotoga and the other bacterial lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auer J, Lechner K, Böck A (1989) Gene organization and structure of two transcriptional units fromMethanococcus coding for ribosomal proteins and elongation factors. Can J Microbiol 35:200–204

    Google Scholar 

  • Bachleitner M, Ludwig W, Stetter KO, Schleifer KH (1989) Nucleotide sequence of the gene coding for the elongation factor Tu of the extremely thermophilic eubacteriumThermotoga maritima. FEMS Microbiol Lett 57:115–120

    Google Scholar 

  • Blin N, Stafford DW (1976) Isolation of high molecular weight DNA. Nucleic Acids Res 3:2303–2308

    Google Scholar 

  • Bolivar F, Rodriguez EL, Green P, Bettlach MC, Heynecker HL, Boyer HW, Crose J, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:295–313

    Google Scholar 

  • Buttarelli FR, Calogero RA, Tiboni O, Gualerzi CO, Pon CL (1989) Characterization of thestr operon genes fromSpirulina platensis and their evolutionary relationships to those of other prokaryotes. Mol Gen Genet 217:97–104

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence ofEscherichia coli cells. Gene 6:23–28

    Google Scholar 

  • Dayhoff MO (1978) A model of evolutionary change in protein. Matrices for detecting distant relationships. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 345–358

    Google Scholar 

  • Dever TE, Glynias MJ, Merrick WC (1987) GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818

    Google Scholar 

  • Devereux I, Haeberli P, Smithies O (1984) A comprehensive set of sequence analyses programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Google Scholar 

  • Felsenstein J (1984) The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In: Ducan T, Stuessy TF (eds) Cladistics: perspectives in the reconstruction of evolutionary history. Columbia University Press, New York, pp 169–191

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Feng DF, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21:112–125

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 15:279–284

    Google Scholar 

  • Higuchi R, Stang HD, Browne JK, Martin MO, Huot M, Lipeles J, Salser W (1981) Human ribosomal RNA gene spacer sequences are found interspersed elsewhere in the genome. Gene 15:177–186

    Google Scholar 

  • Holmquist R, Miyamoto MM, Goodman M (1988) Analysis of higher primate phylogeny for transversion differences in nuclear and mitochondrial DNA by Lake's method of evolutionary parsimony and operator metrics. Mol Biol Evol 5: 217–236

    Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986)Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 87°C. Arch Microbiol 144:324–333

    Google Scholar 

  • Iwabe N, Kuma KI, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Google Scholar 

  • Jaskunas SR, Lindhal R, Nomura M, Burgess RR (1975) Identification of two copies of the gene for elongation factor EF-Tu inEscherichia coli. Nature 257:458–462.

    Google Scholar 

  • Jaskunas SR, Fallon AM, Nomura M (1977) Identification and organization of ribosomal protein genes ofEscherichia coli carried by thefus2 transducing phage. J Biol Chem 252:7323–7336

    Google Scholar 

  • Khono K, Uchida T, Ohkubo H, Nakanishi S, Nakanishi T, Fukui T, Ohtuka E, Ikehara M, Okada Y (1986) Amino acid sequence of mammalian elongation factor 2 deduced from the cDNA sequence: homology with GTP-binding proteins. Proc Natl Acad Sci USA 83:4978–4982

    Google Scholar 

  • Lake JA (1987a) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191

    Google Scholar 

  • Lake JA (1987b) Determining evolutionary distances from highly diverged nucleic acid sequences: operator metrics. J Mol Evol 26:59–73

    Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186

    Google Scholar 

  • Lechner K, Böck A (1987) Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol Gen Genet 208:523–528

    Google Scholar 

  • Lechner K, Heller G, Böck A (1988) Gene for the diphtheria toxin-susceptible elongation factor 2 fromMethanococcus vannielii. Nucleic Acids Res 16:7817–7826

    Google Scholar 

  • Londei P, Altamura S, Huber R, Stetter KO, Cammarano P (1988) Ribosomes of the extremely thermophilic eubacteriumThermotoga maritima are uniquely insensitive to the miscoding inducing action of aminoglycoside antibiotics. J Bacteriol 170:4353–4360

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  • Ohama T, Yamao A, Muto A, Osawa S (1987) Organization and codon usage of the streptomycin operon inMicrococcus luteus; a bacterium with a high genomic G+C content. J Bacteriol 169:4770–4777

    Google Scholar 

  • Post LE, Nornura M (1980) DNA sequences from thestr operon ofEscherichia coli. J Biol Chem 255:4660–4666

    Google Scholar 

  • Pühler G, Leffers H, Gropp F, Palm P, Klenk HP, Lottspeich F, Garrett R, Zillig W (1989) Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci USA 86:4569–4573

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Google Scholar 

  • Tiboni O, Sanangelantoni AM, Cammarano P, Cimino L, Di Pasquale G, Sora S (1989) Expression inEscherichia coli of thetuf gene from the extremely thermophilic eubacteriumThermotoga maritima: purification of theThermotoga elongation factor Tu by thermal denaturation of the mesophile host-cell proteins. Syst Appl Microbiol 12:127–133

    Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids and M13mp7-derived system for insertion, mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Zengel YM, Archer RH, Lindahl L (1984) The nucleotide sequence of theEscherichia coli fus gene coding for elongation factor G. Nucleic Acids Res 12:2181–2192

    Google Scholar 

  • Zillig W, Palm P, Klenk HP, Pühler G, Gropp F, Schleper C (in press) Phylogeny of DNA-dependent RNA polymerases: testimony for the origin of eukaryotes. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum, New York

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiboni, O., Cantoni, R., Creti, R. et al. Phylogenetic depth ofThermotoga maritima inferred from analysis of thefus gene: Amino acid sequence of elongation factor G and organization of theThermotoga str operon. J Mol Evol 33, 142–151 (1991). https://doi.org/10.1007/BF02193628

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02193628

Key words

Navigation