Skip to main content
Log in

Multicriterion structure/control design for optimal maneuverability and fault tolerance of flexible spacecraft

  • Contributed Papers
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A multicriterion design problem for optimal maneuverability and fault tolerance of flexible spacecraft is considered. The maneuverability index reflects the time required to perform rest-to-rest attitude maneuvers for a given set of angles, with the postmaneuver spillover within a specified bound. The performance degradation is defined to reflect the maximum possible attitude error after maneuver due to the effect of faults. The fault-tolerant design is to minimize the worst performance degradation from all admissible faults by adjusting the design of the spacecraft. It is assumed that admissible faults can be specified by a vector of real parameters. The multicriterion design for optimal maneuverability and fault tolerance is shown to be well defined, leading to a minimax problem. Analysis for this nonsmooth problem leads to closed-form expressions of the generalized gradient of the performance degradation function with respect to the fault parameters and structural design variables. Necessary and sufficient conditions for the optimum are derived, and the closed-form expressions of the generalized gradients are applied for their interpretation. The bundle method is applicable to this minimax problem. Approximate methods which efficiently solve this minimax problem with relatively little computational difficulties are presented. Numerical examples suggest that it is possible to improve the fault tolerance substantially with relatively little loss in maneuverability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling, J., Kabamba, P., andTaylor, J.,Combined Design of Structures and Controllers for Optimal Maneuverability, Structural Optimization, Vol. 3, pp. 214–230, 1991.

    Article  Google Scholar 

  2. Byers, R. M., Vadali, S. R., andJunkins, J. L.,Near-Minimum Time Closed-Loop Slewing of Flexible Spacecraft, Journal of Guidance, Control., and Dynamics, Vol. 13, pp. 57–65, 1990.

    Google Scholar 

  3. Mota Soares, C. A., Editor,Computer-Aided Optimal Design: Structural and Mechanical Systems, NATO ASI Series, Springer Verlag, Berlin, Germany, 1987.

    Google Scholar 

  4. Sun, P. F., Arora, J. S., andHaug, E. J.,Fail-Safe Optimal Design of Structures, Journal of Engineering Optimization, Vol. 2, pp. 45–53, 1976.

    Google Scholar 

  5. Haftka, R. T.,Damage-Tolerant Design Using Collapse Techniques, AIAA Journal, Vol. 21, pp. 1462–1466, 1983.

    Google Scholar 

  6. Taylor, J. E., andKikuchi, N.,Optimal Fail-Safe Design: A Multicriterion Formulation, Proceedings of the 16th IUTAM Congress, Copenhagen, Denmar, 1984.

  7. Lunze, J.,Robust Multivariable Feedback Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

    Google Scholar 

  8. Howze, J. W., andCavin, R. K.,Regulator Design with Modal Insensitivity, IEEE Transactions on Automatic Control, Vol. 24, pp. 466–469, 1979.

    Article  Google Scholar 

  9. Lim, K. B., andJunkins, J. L.,Minimum Sensitivity Eigenvalue Placement via Sequential Linear Programming, Proceedings of the Dynamics and Control Institute, Mountain Lake, California, 1985.

  10. Newsom, J. R., andMukhopadhyay, V.,A Multiloop Robust Controller Design Study Using Singular-Value Gradients, Journal of Guidance, Control, and Dynamics, Vol. 14, pp. 514–519, 1985.

    Google Scholar 

  11. Kosut, R. L., Salzwedel, H., andNaeini, A. E.,Robust Control of Flexible Spacecraft, Journal of Guidance, Control, and Dynamics, Vol. 6, pp. 104–111, 1983.

    Google Scholar 

  12. Keel, L. H., Lim, K. B., andJuang, J. N.,Robust Eigenvalue Assignment with Maximum Tolerance to System Uncertainties, Journal of Guidance, Control, and Dynamics, Vol. 14, pp. 615–620, 1991.

    Google Scholar 

  13. Lim, K. B., andJunkins, J. L.,Robustness Optimization of Structural and Controller Parameters, Journal of Guidance, Control, and Dynamics, Vol. 12, pp. 89–96, 1989.

    Google Scholar 

  14. Rao, S., Pan, T. S., andVenkayya, V. B.,Robustness Improvement of Actively Controlled Structures through Structural Modification, AIAA Journal, Vol. 28, pp. 353–361, 1990.

    Google Scholar 

  15. Ling, J., Kabamba, P., andTaylor, J.,Multicriterion Structure/Control Design for Optimal Maneuverability and Fault Tolerance of Flexible Spacecraft, Report, Aerospace Engineering Department, University of Michigan, 1992.

  16. Fu, M., andBarmish, B. R.,Maximal Unidirectional Perturbation Bounds for Stability of Polynomials and Matrices, Systems and Control Letters, Vol. 11, pp. 173–179, 1988.

    Article  Google Scholar 

  17. Bernstein, D. S., andHaddad, W. M.,Robust Stability and Performance Analysis for State-Space Systems via Quadratic Lyapunov Bounds, SIAM Journal on matrix Analysis and Applications, Vol. 11, pp. 239–271, 1990.

    Article  Google Scholar 

  18. Zhou, K., andKhargonekar, P. P.,Stability Robustness Bounds for State-Space Models with Structured Uncertainty, IEEE Transactions on Automatic Control, Vol. 32, pp. 621–623, 1988.

    Google Scholar 

  19. Clarke, F. H.,Optimization and Nonsmooth Analysis Wiley-Interscience, Toronto, Canada, 1983.

    Google Scholar 

  20. Lemarechal, C., andMifflin, R., EditorsNonsmooth Optimization, Pergamon Press, New York, New York, 1978.

    Google Scholar 

  21. Lemarechal, C.,Method of Descent for Nondifferentiable, Optimization, SIAM Review, Vol. 30, pp. 146–147, 1988.

    Article  Google Scholar 

  22. Salmon, D. M.,Minimax Controller Design, IEEE Transactions on Automatic Control, Vol. 13, pp. 369–376, 1968.

    Article  Google Scholar 

  23. Osyczka, A. Editor,Multicriteria Design Optimization: Procedures and Applications, Springer Verlag, Heidelberg Germany, 1990.

    Google Scholar 

  24. Bendsoe, M. P., Olhoff, N., andTaylor, J. E.,A Variational Formulation for Multicriteria Structural Optimization, Journal of Structure Mechanics Vol. 11, pp. 523–544, 1984.

    Google Scholar 

  25. Stadler, W.,Applications of Multicriteria Optimization in Engineering and the Sciences: A Survey, MCDM-Post Decade and Future Trends, Edited by M. Zeleny, JAI Press, Greenwich, Connecticut, 1983.

    Google Scholar 

  26. Singh, G., Kabamba, P. T., andMcClamroch, N. H.,Planar, Time-Optimal, Rest-to-Rest Slewing Maneuvers of Flexible Spacecraft, Journal of Guidance, Control, and Dynamics, Vol. 12, pp. 71–81, 1989.

    Google Scholar 

  27. Clarke, F. H.,Generalized Gradients and Applications, Transactions of the American Mathematical Society, Vol. 205, pp. 247–262, 1975.

    Google Scholar 

  28. Luenberger, D. G.,Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts, 1984.

    Google Scholar 

  29. Royden, H. L.,Real Analysis, Macmillan Publishing Company, New York, New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Meirovitch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, J., Kabamba, P. & Taylor, J. Multicriterion structure/control design for optimal maneuverability and fault tolerance of flexible spacecraft. J Optim Theory Appl 82, 219–251 (1994). https://doi.org/10.1007/BF02191852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02191852

Key Words

Navigation