Skip to main content
Log in

Does the universe in fact contain almost no information?

  • Published:
Foundations of Physics Letters

Abstract

At first sight, an accurate description of the state of the universe appears to require a mind-bogglingly large and perhaps even infinite amount of information, even if we restrict our attention to a small subsystem such as a rabbit. In this paper, it is suggested that most of this information is merely apparent, as seen from our subjective viewpoints, and that the algorithmic information content of the universe as a whole is close to zero. It is argued that if the Schrödinger equation is universally valid, then decoherence together with the standard chaotic behavior of certain non-linear systems will make the universe appear extremely complex to any self-aware subsets that happen to inhabit it now, even if it was in a quite simple state shortly after the big bang. For instance, gravitational instability would amplify the microscopic primordial density fluctuations that are required by the Heisenberg uncertainty principle into quite macroscopic inhomogeneities, forcing the current wavefunction of the universe to contain such Byzantine super-positions as our planet being in many macroscopically different places at once. Since decoherence bars us from experiencing more than one macroscopic reality, we would see seemingly complex constellations of starsetc., even if the initial wavefunction of the universe was perfectly homogeneous and isotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yukawa,Prog. Theo. Phys. Suppl. 37&38, 512 (1966).

    Google Scholar 

  2. H. Yamamoto,Phys. Rev. D 30, 1727 (1984).

    Google Scholar 

  3. K. E. Plokhotnikov,Sov. Phys. Doklady 36, 38 (1991).

    Google Scholar 

  4. R. J. Solomonoff,Inf. Control 7, 1 (1964).

    Google Scholar 

  5. A. N. Komogorov,Inf. Transmission 1, 3 (1965).

    Google Scholar 

  6. A. N. Kolmogorov,IEEE Trans. Inf. Theory 14, 662 (1968).

    Google Scholar 

  7. A. N. Kolmogorov,Usp. Mat. Nauk 25, 602 (1970).

    Google Scholar 

  8. G. J. Chaitin,Ass. Comput. Mach. 13, 547 (1966).

    Google Scholar 

  9. G. J. Chaitin,Scient. Am. 232(5), 47 (1975).

    Google Scholar 

  10. G. J. Chaitin,Ass. Comput. Mach. 22, 245 (1975).

    Google Scholar 

  11. G. J. Chaitin,IBM J. Res. Dev. 21, 350 (1977).

    Google Scholar 

  12. G. J. Chaitin,Algorithmic Information Theory, (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  13. P. Gacs,P. Soviet Math. Dokl. 15, 1477 (1974).

    Google Scholar 

  14. L. A. Levin,Soviet Math. Dokl. 17, 522 (1976).

    Google Scholar 

  15. I. Stewart,Nature 332, 115 (1988).

    Google Scholar 

  16. W. H. Zurek,Nature 341, 119 (1989).

    Google Scholar 

  17. W. H. Zurek,Phys. Rev. A 40, 4731 (1989).

    Google Scholar 

  18. C. M. Caves,Phys. Rev. E 47, 4010 (1993).

    Google Scholar 

  19. E. Kolb and M. S. Turner,The Early Universe (Addison-Wesley, Reading, 1990).

    Google Scholar 

  20. E. P. Wigner,Phys. Rev. 40, 749 (1932).

    Google Scholar 

  21. Y. S. Kim & M. E. Noz,Phase Space Picture of Quantum Mechanics: Group Theoretical Approach (World Scientific, Singapore, 1991).

    Google Scholar 

  22. W. H. Zurek & J. P. Paz,Phys. Rev. Lett. 72, 2508 (1994).

    Google Scholar 

  23. H. Everett III,Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  24. H. Everett III,The Many-Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1986).

    Google Scholar 

  25. J. A. Wheeler,Rev. Mod. Phys. 29, 463 (1957).

    Google Scholar 

  26. L. M. Cooper & D. van Vechten,Am. J. Phys. 37, 1212 (1969).

    Google Scholar 

  27. L. N. Cooper, “Wave function and observer in quantum theory”, inThe Physicist's Conception of Nature, J. Mehra, ed. (Reidel, Dordrecht, 1983).

    Google Scholar 

  28. B. S. DeWitt,Phys. Today 23 (9), 30 (1971).

    Google Scholar 

  29. A. Peres & W. H. Zurek,Am. J. Phys. 50, 807 (1982).

    Google Scholar 

  30. Y. Ben-Dov,Found. Phys. 3, 383 (1990).

    Google Scholar 

  31. A. Kent,Int. J. Mod. Phys. 5, 1745 (1990).

    Google Scholar 

  32. E. J. Squires,Found. Phys. Lett. 3, 87 (1990).

    Google Scholar 

  33. H. D. Zeh,Found. Phys. 1, 69 (1970).

    Google Scholar 

  34. W. H. Zurek,Phys. Rev. D 24, 1516 (1981).

    Google Scholar 

  35. W. H. Zurek,Phys. Rev. D 26, 1862 (1982).

    Google Scholar 

  36. W. H. Zurek,Phys. Today 44 (10), 36 (1991).

    Google Scholar 

  37. E. Joos and H. D. Zeh,Z. Phys. B 59, 223 (1985).

    Google Scholar 

  38. M. Tegmark,Found. Phys. Lett. 6, 571 (1993).

    Google Scholar 

  39. S. Lloyd & H. Pagels,Annals of Phys. 188, 186 (1988).

    Google Scholar 

  40. S. Lloyd,Phys. Rev. A 39, 5328 (1989).

    Google Scholar 

  41. S. W. Hawking,Nucl. Phys. B 239, 257 (1984).

    Google Scholar 

  42. T. Souradeep,ApJ 402, 375 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tegmark, M. Does the universe in fact contain almost no information?. Found Phys Lett 9, 25–41 (1996). https://doi.org/10.1007/BF02186207

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186207

Key words

Navigation