Skip to main content
Log in

Differentiation of the ciliary muscle in the human embryo and fetus

  • Laboratory Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

In human embryos and fetuses with a gestation age of 10.3 to 22 weeks, differentiation of the ciliary muscle was examined both by light and transmission electron microscopy. The smooth muscle cells develop from mesenchymal elements or early fibroblasts located in the region between the anterior scleral condensation and the ciliary pigment epithelium. The first musclelike cells exhibiting myofilaments and dense bodies could be distinguished during week 12. Smooth muscle cells with an adultlike appearance become apparent during week 15/16. Up to week 22, a cellular maturation process can be observed. Fibroblasts separating the muscle cell layers from each other also derive from the same precursor cells, as do the smooth muscle cells, thereby pointing to the close relationship between the two cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan AS, Balis JV, Conen PE (1965) Maturation of smooth muscle cells in the developing human aorta. Anat Rec 151:334a

    Google Scholar 

  2. Duke-Elder S, Cook CH (1963) Normal and abnormal development. In: Duke-Elder S (ed) System of ophthalmology, vol 3, part 1. Embryology. Mosby, St. Louis

    Google Scholar 

  3. Fuchs E (1928) Über den Ciliarmuskel. Graefe's Arch Clin Exp Ophthalmol 120: 735–741

    Google Scholar 

  4. Gabbiani G, Majno G, Ryan GB (1973) The fibroblast as a contractile cell: the myo-fibroblast. In: Kulonen E, Pikkarainen J (eds) Biology of fibroblast. Academic Press, London New York, pp 139–154

    Google Scholar 

  5. Herzog H (1902) Über die Entwicklung der Binnenmuskulatur des Auges. Arch Mikrosk Anat 60:517–586

    Google Scholar 

  6. Hogan MJ, Alvarado JA, Wedell JE (1971) Histology of the human eye. Saunders, Philadelphia

    Google Scholar 

  7. Ishikawa T (1962) Fine structure of the human ciliary muscle. Invest Ophthalmol 1: 587–608

    Google Scholar 

  8. Kelemen E, Janossa M, Calvo W, Fliedner TM (1984) Developmental age estimated by bone-length measurement in human fetuses. Anat Rec 209:547–542

    Google Scholar 

  9. Konishi I, Fujii S, Okamura H, Mori T (1984) Development of smooth muscle in the human fetal uterus: an ultrastructural study. J Anat 139:239–252

    Google Scholar 

  10. Krapp J (1962) Elektronenmikroskopische Untersuchungen über die Innervation von Iris und Corpus ciliare der Hauskatze unter besonderer Berücksichtigung der Muskulatur. Z Mikrosk Anat Forsch 68: 418–447

    Google Scholar 

  11. Mann I (1964) The development of the human eye, 3rd edn. Grune & Stratton, New York

    Google Scholar 

  12. Maunsbach AB (1966) The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res 15:242–282

    Google Scholar 

  13. Remé C, Lalive d'Epinay S (1981) Periods of development of the normal human chamber angle. Doc Ophthalmol 51:241–268

    Google Scholar 

  14. Rohen JW (1952) Der Ziliarkörper als funktionelles System. Morphol Jahrb 92: 415–440

    Google Scholar 

  15. Rohen JW (1977) Morphologie und Embryologie des Sehorgans. In: François J (ed) Augenheilkunde in Klinik und Praxis, vol 1. Thieme, Stuttgart, pp 1.1–1.57

    Google Scholar 

  16. Ruprecht KW, Wulle KG (1973) Licht- und elektronenmikroskopische Untersuchungen zur Entwicklung des menschlichen Musculus sphincter pupillae. Graefe's Arch Clin Exp Ophthalmol 186:117–130

    Google Scholar 

  17. Seefelder R, Wolfrum C (1906) Zur Entwicklung der vorderen Kammer und des Kammerwinkels beim Menschen, nebst Bemerkungen über ihre Entstehung bei Tieren. Graefe's Arch Clin Exp Ophthalmol 63:430–451

    Google Scholar 

  18. Shiose Y (1961) Electron microscopic studies on the ciliary muscle. Acta Soc Ophthalmol Jpn 65:1267–1283

    Google Scholar 

  19. Stieve R (1949) Über den Bau des menschlichen Ziliarmuskels, seine physiologischen Veränderungen während des Lebens und seine Bedeutung für die Akkommodation. Z Mikrosk Anat Forsch 55:3–88

    Google Scholar 

  20. Streeten BW (1982) Ciliary body. In: Jakobiec FA (ed) Ocular anatomy, embryology, and teratology. Harper & Row, Philadelphia, pp 303–330

    Google Scholar 

  21. Uga S (1968) Electron microscopy of the ciliary muscle. Part II. On the fine structure of the anterior terminal portion of the ciliary muscle. Acta Soc Ophthalmol Jpn 72:1019–1025

    Google Scholar 

  22. Zypen E van der (1967) Licht- und elektronenmikroskopische Untersuchungen über den Bau und die Innervation des Ciliarmuskels bei Mensch und Affe (Cercopithecus aethiops). Graefe's Arch Clin Exp Ophthalmol 174:143–168

    Google Scholar 

  23. Zypen E van der (1970) Licht- und elektronenmikroskopische Untersuchungen über die Altersveränderungen am M. ciliaris im menschlichen Auge. Graefe's Arch Clin Exp Ophthalmol 179: 332–357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was performed under the support of a training grant in ophthalmic electron microscopy from Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellheyer, K., Spitznas, M. Differentiation of the ciliary muscle in the human embryo and fetus. Graefe's Arch Clin Exp Ophthalmol 226, 281–287 (1988). https://doi.org/10.1007/BF02181197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181197

Keywords

Navigation