Skip to main content
Log in

Coupled processes of aluminum oxidation and asphaltite hydrogenation in supercritical water flow

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The conversion of asphaltite (empirical formula CH1.23N0.017S0.037O0.01) in supercritical water (SCW) flow at 400°C and 30 MPa with and without addition of aluminum shavings is investigated. The composition and amount of the products and insoluble conversion residue are determined by means of liquid-adsorption chromatography, elemental analysis, IR and 1H NMR spectroscopy, mass spectrometry, and gas chromatography/mass spectrometry. It is found that SCW not only dissolves asphaltite components, but also participates in redox reactions. Hydrogen formation and heat evolution during aluminum oxidation by SCW promote the in situ hydrogenation of asphaltite, increase the fraction of aromatic and polyaromatic compounds in conversion products, decrease the yield of the insoluble conversion residue from 44.5 to 11.3%, and decrease the olefine fraction. When aluminum is added, the degree of asphaltite desulfurization that results from sulfur removal in the form of H2S increases by more than 3.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Vilcaez, M. Watanabe, N. Watanabe, A. Kishita, and T. Adschiri, Fuel 102, 379 (2012).

    Article  CAS  Google Scholar 

  2. M. Meng, H. Hu, Q. Znang, and M. Ding, Energy Fuels 20, 1157 (2006).

    Article  CAS  Google Scholar 

  3. M. Morimoto, Y. Sugimoto, Y. Saotome, S. Sato, and T. Takanohashi, J. Supercrit. Fluids 55, 223 (2010).

    Article  CAS  Google Scholar 

  4. Z.-M. Cheng, Y. Ding, L.-Q. Zhao, P.-Q. Yuan, and W.-K. Yuan, Energy Fuels 23, 3187 (2009).

    Google Scholar 

  5. Y. Liu, F. Bai, C.-C. Zhu, P.-Q. Yuan, Z.-M. Cheng, and W.-K. Yuan, Fuel Process. Technol. 106, 281 (2013).

    Article  CAS  Google Scholar 

  6. O. N. Fedyaeva and A. A. Vostrikov, J. Supercrit. Fluids 72, 100 (2012).

    Article  CAS  Google Scholar 

  7. T. Sato, T. Adschiri, K. Arai, G. L. Rempel, and F. T. T. Ng, Fuel 82, 1231 (2003).

    Article  CAS  Google Scholar 

  8. L. Han, R. Zhang, and J. Bi, Fuel Process. Technol. 90, 292 (2009).

    Article  CAS  Google Scholar 

  9. I. V. Kozhevnikov, A. L. Nuzhdin, and O. N. Martyanov, J. Supercrit. Fluids 55, 217 (2010).

    Article  CAS  Google Scholar 

  10. M. Morimoto, S. Sato, and T. Takanohashi, J. Supercrit. Fluids 68, 113 (2012).

    Article  CAS  Google Scholar 

  11. K. Arai, T. Adschiri, and M. Watanabe, Ind. Eng. Chem. Res. 39, 4697 (2000).

    Article  CAS  Google Scholar 

  12. T. Sato, T. Tomita, P. H. Trung, N. Itoh, S. Sato, and T. Takanohashi, Energy Fuels 27, 646 (2013).

    Article  CAS  Google Scholar 

  13. T. Sato, S. Mori, M. Watanabe, M. Sasaki, and N. Itoh, J. Supercrit. Fluids 55, 232 (2010).

    Article  CAS  Google Scholar 

  14. T. Adschiri, T. Sato, H. Shibuichi, Z. Fang, S. Okazaki, and K. Arai, Fuel 79, 243 (2000).

    Article  CAS  Google Scholar 

  15. A. A. Vostrikov and O. N. Fedyaeva, J. Supercrit. Fluids 55, 307 (2010).

    Article  CAS  Google Scholar 

  16. O. N. Fedyaeva, A. A. Vostrikov, M. Ya. Sokol, and N. I. Fedorova, Sverkhkrit. Fluidy: Teor. Prakt. 7(4), 16 (2012). [Russian J. Physical Chemistry B 7, 820 (2013)]

    Google Scholar 

  17. V. R. Antipenko, I. V. Goncharov, Yu. V. Rokosov, and L. S. Borisova, Sverkhkrit. Fluidy: Teor. Prakt. 6(3), 15 (2011). [Russian J. Physical Chemistry B 5, 1195 (2011)]

    Google Scholar 

  18. O. V. Burvan, V. R. Antipenko, V. I. Luk’yanov, and G. A. Tomson, in Proceedings of the 4th International Conference on Chemistry of Petroleum and Gas (STT, Tomsk, 2000), Vol. 1, p. 222.

    Google Scholar 

  19. O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, M. Ya. Sokol, L. S. Borisova, and V. A. Kashirtsev, Sverkhkrit. Fluidy: Teor. Prakt. 6(4), 60 (2011). [Russian J. Physical Chemistry B 6, 793 (2012)]

    Google Scholar 

  20. Recent Research Methods, Reference Handbook, Ed. by A. I. Bogomolov, M. B. Temyanko, and L. I. Khotyntseva (Nedra, Leningrad, 1984) [in Russian].

    Google Scholar 

  21. RF Patent No. 2001397 (2001).

  22. M. B. Smirnov, E. N. Poludetkina, and N. A. Vanyukova, Pet. Chem. 50, 189 (2010).

    Article  Google Scholar 

  23. R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Substances, Handbook (Drofa, Moscow, 2006) [in Russian].

    Google Scholar 

  24. O. N. Fedyaeva and A. A. Vostrikov, Sverkhkrit. Fluidy: Teor. Prakt. 7(1), 64 (2012). [Russian J. Physical Chemistry B 6, 844 (2012)]

    Google Scholar 

  25. O. M. Ogunsola and N. Berkowitz, Fuel 74, 1485 (1995).

    Article  CAS  Google Scholar 

  26. P. C. Mandal, S. M. Wahyudiono, and M. Goto, Fuel 92, 288 (2012).

    Article  CAS  Google Scholar 

  27. P. C. Mandal, S. M. Wahyudiono, and M. Goto, Fuel Process. Technol. 104, 67 (2012).

    Article  CAS  Google Scholar 

  28. G. F. Bol’shakov, Infrared Spectra of Arenes (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  29. M. A. Gough and S. J. Rouland, Nature 344(6267), 648 (1990).

    Article  CAS  Google Scholar 

  30. S. D. Killops and M. Aljuboori, Org. Geochem. 15, 147 (1990).

    Article  CAS  Google Scholar 

  31. N. S. Vorobieva and Al. A. Petrov, Pet. Chem. 43, 1 (2003).

    Google Scholar 

  32. V. R. Antipenko, O. A. Golubina, I. V. Goncharov, S. V. Nosova, and S. B. Ostroukhov, Pet. Chem. 47, 154 (2007).

    Article  Google Scholar 

  33. V. R. Antipenko and I. V. Goncharov, Pet. Chem. 51, 324 (2011).

    Article  CAS  Google Scholar 

  34. F. Mandragon and K. Ouichi, Fuel 63, 973 (1984).

    Article  Google Scholar 

  35. A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Khim. Interesah Ustoich. Razvit., No. 2, 205 (2012).

    Google Scholar 

  36. A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Pet. Chem. 52, 221 (2012).

    Article  Google Scholar 

  37. A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Neftepererab. Neftekhim., No. 4, 24 (2012).

    Google Scholar 

  38. V. R. Antipenko and V. N. Melenevskii, Pet. Chem. 52, 373 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Additional information

Original Russian Text © O.N. Fedyaeva, V.R. Antipenko, A.V. Shishkin, A.A. Vostrikov, 2014, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2014, Vol. 9, No. 1, pp. 62–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Antipenko, V.R., Shishkin, A.V. et al. Coupled processes of aluminum oxidation and asphaltite hydrogenation in supercritical water flow. Russ. J. Phys. Chem. B 8, 1069–1080 (2014). https://doi.org/10.1134/S1990793114080077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114080077

Keywords

Navigation