Skip to main content

Two Comments on the Derivation of the Time-Dependent Hartree–Fock Equation

  • Conference paper
  • First Online:
Quantum Mathematics I (INdAM 2022)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 57))

Included in the following conference series:

  • 208 Accesses

Abstract

We revisit the derivation of the time-dependent Hartree–Fock equation for interacting fermions in a regime coupling a mean-field and a semiclassical scaling, contributing two comments to the result obtained in 2014 by Benedikter, Porta, and Schlein. First, the derivation holds in arbitrary space dimension. Second, by using an explicit formula for the unitary implementation of particle-hole transformations, we cast the proof in a form similar to the coherent state method of Rodnianski and Schlein for bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Accuracy of the time-dependent Hartree–Fock approximation for uncorrelated initial states. J. Stat. Phys. 115(3/4), 1037–1055 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedikter, N.: Bosonic collective excitations in Fermi gases. Rev. Math. Phys. 33(1), 2060009 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedikter, N.: Effective dynamics of interacting fermions from semiclassical theory to the random phase approximation. J. Math. Phys. 63(8), 081101 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55(2), 021901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of Fermionic systems. Commun. Math. Phys. 331(3), 1087–1131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benedikter, N., Jakšić, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of Fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benedikter, N., Sok, J., Solovej, J.P.: The Dirac–Frenkel principle for reduced density matrices, and the Bogoliubov–de Gennes equations. Ann. Henri Poincaré 19(4), 1167–1214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benedikter, N., Nam, P.T., Porta, M., Schlein, B., Seiringer, R.: Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime. Commun. Math. Phys. 374(3), 2097–2150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benedikter, N., Nam, P.T., Porta, M., Schlein, B., Seiringer, R.: Correlation energy of a weakly interacting Fermi gas. Invent. Math. 225(3), 885–979 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benedikter, N., Porta, M., Schlein, B., Seiringer, R.: Correlation energy of a weakly interacting Fermi gas with large interaction potential (June 2021). Arch. Rational Mech. Anal. 247(65) (2023). https://doi.org/10.1007/s00205-023-01893-6

  13. Benedikter, N., Nam, P.T., Porta, M., Schlein, B., Seiringer, R.: Bosonization of Fermionic many-body dynamics. Ann. Henri Poincaré 23(5), 1725–1764 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chong, J.J., Lafleche, L., Saffirio, C.: From many-body quantum dynamics to the Hartree–Fock and Vlasov equations with singular potentials (May 2021). arXiv:2103.10946 [math-ph]

    Google Scholar 

  15. Chong, J.J., Lafleche, L., Saffirio, C.: On the \(l^2\) rate of convergence in the limit from Hartree to Vlasov–Poisson equation (Mar 2022).arXiv:2203.11485 [math-ph, physics:quant-ph]

    Google Scholar 

  16. Christiansen, M.R., Hainzl, C., Nam, P.T.: The random phase approximation for interacting Fermi gases in the mean-field regime (June 2021). arXiv:2106.11161 [cond-mat, physics:math-ph]

    Google Scholar 

  17. Christiansen, M.R., Hainzl, C., Nam, P.T.: The Gell-Mann–Brueckner formula for the correlation energy of electron gas: a rigorous upper bound in the mean-field regime (Aug 2022). Commun. Math. Phys. 401, 1469–1529 (2023). https://doi.org/10.1007/s00220-023-04672-2

    Article  MATH  Google Scholar 

  18. Christiansen, M.R., Hainzl, C., Nam, P.T.: On the effective Quasi-Bosonic Hamiltonian of the electron gas: collective excitations and plasmon modes (June 2022). Lett. Math. Phys. 112, 114 (2022). https://doi.org/10.1007/s11005-022-01607-1

    Article  MATH  Google Scholar 

  19. Fournais, S., Mikkelsen, S.: An optimal semiclassical bound on commutators of spectral projections with position and momentum operators. Lett. Math. Phys. 110(12), 3343–3373 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fresta, L., Porta, M., Schlein, B.: Effective dynamics of extended Fermi gases in the high-density regime (Apr 2022). Commun. Math. Phys. 401, 1701–1751 (2023). https://doi.org/10.1007/s00220-023-04677-x

    Article  MATH  Google Scholar 

  21. Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lill, S.: Implementing Bogoliubov transformations beyond the Shale-Stinespring condition (Apr 2022). arXiv:2204.13407 [math-ph]

    Google Scholar 

  23. Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2008)

    Google Scholar 

  24. Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981

    Article  MathSciNet  Google Scholar 

  25. Petrat, S., Pickl, P.: A new method and a new scaling for deriving Fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19(1), 3 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Porta, M., Rademacher, S., Saffirio, C., Schlein, B.: Mean field evolution of Fermions with Coulomb interaction. J. Stat. Phys. 166(6), 1345–1364 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saffirio, C.: Mean-field evolution of Fermions with singular interaction. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds.) Macroscopic Limits of Quantum Systems, vol. 270, pp. 81–99. Springer International Publishing, Cham (2018)

    Chapter  MATH  Google Scholar 

  29. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(1), 445–455 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

NB has been supported by Gruppo Nazionale per la Fisica Matematica (GNFM) in Italy and the European Research Council (ERC) through the Starting Grant FermiMath, grant agreement nr. 101040991. The authors acknowledge the support of Istituto Nazionale di Alta Matematica “F. Severi” through the Intensive Period “INdAM Quantum Meetings (IQM22)”. The authors do not have any conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Benedikter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benedikter, N., Desio, D. (2023). Two Comments on the Derivation of the Time-Dependent Hartree–Fock Equation. In: Correggi, M., Falconi, M. (eds) Quantum Mathematics I. INdAM 2022. Springer INdAM Series, vol 57. Springer, Singapore. https://doi.org/10.1007/978-981-99-5894-8_13

Download citation

Publish with us

Policies and ethics