Skip to main content
Log in

Validation of techniques for space based remote sensing of auroral precipitation and its ionospheric effects

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Knowledge of the spatial distribution of auroral precipitation and its associated ionospheric effects is important both to scientific studies of the Earth's environment and successful operation of defense and communication systems. Observations with the best spatial and temporal coverage are obtained through remote sensing from space-based platforms. Various techniques have been used, including the detection of visible, ultraviolet and X-ray emissions produced by the precipitating particles. Interpretation of the measurements is enabled through theoretical modeling of the interaction of precipitating particles with atmospheric constituents. A great variety of auroral precipitation exists, with each kind differing in the type and energy distribution of the particles, as well as in its spatial and temporal behavior. Viable remote sensing techniques must be able to distinguish at least the species of particle, the total energy flux, and the average energy. Methods based on visible, ultraviolet and X-ray emissions meet these requirements to varying degrees. These techniques and the associated space instrumentation have evolved in parallel over the last two decades. Each of the methods has been tested using simultaneous measurements made by space-based imaging systems and ground-based measurements made by radars and optical instruments. These experiments have been extremely helpful in evaluating the performance and practicality of the instruments and the results have been crucial in improving instrument design for future remote sensing platforms. The next decade will see continued development and test of remote sensing instruments and the measurements, in addition to providing important operational data, will be increasingly more critical in addressing a number of scientific problems in auroral and atmospheric physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarsnes, K., Stadsnes, J., and Soraas, F.: 1976, ‘Rocket Measurements of X-rays and Energetic Electrons Through an Auroral Arc’, inProceedings of the Symposium on European Progress on Sounding Rocket and Balloon Research in the Auroral Zone, Spec. Publ. ESA-SP115, European Space Agency, Paris, 241.

    Google Scholar 

  • Ahn, B.-H., Kroehl, H. W., Kamide, Y., and Gorney, D. J.: 1989, ‘Estimation of Ionospheric Electrodynamic Parameters Using Ionospheric Conductance Deduced from Bremsstrahlung X-Ray Image Data’,J. Geophys. Res. 94, 2565.

    Google Scholar 

  • Anderson, K. A.: 1962, ‘Relation of Balloon X-rays to Visible Auroras in the Auroral Zone,J. Phys. Soc. Japan 17 Suppl. A.1 Part 1, 237.

    Google Scholar 

  • Anderson, K. A.: 1965, in M. Walt (ed.), ‘Balloon Measurements of X-rays in the Auroral Zone’, inAuroral Phenomena, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Anderson, K. A. and DeWitt, R.: 1963, ‘Space-Time Association of Auroral Glow and X-rays at Balloon Altitude’,J. Geophys. Res. 68, 2669.

    Google Scholar 

  • Anger, C. D., Lui, A. T. Y., and Akasofu, S.-I.: 1973, ‘Observations of the Auroral Oval and Westward Traveling Surge from ISIS 2 Satellite and Alaska Meridian All-Sky Cameras’,J. Geophys. Res. 78, 3020.

    Google Scholar 

  • Anger, C. D., Fancott, T., McNally, J., and Kerr, H. S.: 1973, ‘The ISIS-2 Scanning Auroral Photometer’,Applied Optics 12, 1753.

    Google Scholar 

  • Anger, C. D., Babey, S. K., Broadfoot, A. L., Brown, R. G., Cogger, L. L., Gattinger, R., Haslett, J. W., King, R. A., McEwen, D. J., Murphree, J. S., Richardson, E. H., Sandel, B. R., Smith, K., And Vallance Jones, A.: 1987, ‘An Ultraviolet Imager for the Viking Spacecraft’,Geophys. Res. Letters 14, 387.

    Google Scholar 

  • Banks, P. M., Chappell, C. R., and Nagy, A. F.: 1974, ‘A New Model for the Interaction of Auroral Electrons With the Atmosphere: Spectral Degradation, Backscatter, Optical Emission, and Ionization’,J. Geophys. Res. 79, 1459.

    Google Scholar 

  • Basu, B., Jasperse, J., Robinson, R., Vondrak, R., and Evans, D.: 1987, ‘Linear Transport Theory of Auroral Proton Precipitation: A Comparison With Observations,J. Geophys. Res. 92 5920.

    Google Scholar 

  • Berger, M. J., Seltzer, S. M., and Maeda, K.: 1970, ‘Energy deposition by auroral electrons in the atmosphere’,J. Atmospheric Terrest. Phys. 32, 1015.

    Article  Google Scholar 

  • Berger, M. J., and Seltzer, S. M.: 1972, ‘Bremsstrahlung in the Atmosphere’,J. Atmospheric Terrest. Phys. 34, 85.

    Article  Google Scholar 

  • Berkey, F. T., Driatskiy, V. M., Henriksen, K., Hultqvist, B., Jelly, D., Shchuka, T. I., Theander, A., and Yliniemi, Y.: 1974, ‘A Synoptic Investigation of Particle Precipitation Dynamics for 60 Substorms in IQSY (1964–1965) and IASY (1969)’,Planetary Space. Sci. 22, 255.

    Article  Google Scholar 

  • Brekke, A., and Hall, C.: 1988, ‘Auroral Ionospheric Quiet Summer Time Conductances’,Ann. Geophysicae 6, 361.

    Google Scholar 

  • Calvert, W., Voss, H. D., and Sanders, T. C.: 1985, ‘A Satellite Imager for Atmospheric X-rays’,IEEE Trans. Nucl. Sci. NS-32, 112.

    Google Scholar 

  • Carruthers, G. R. and Page, T.: 1976, ‘Apollo 16 Far Ultraviolet Imagery of the Polar Auroras, Tropical Airglow Belts, and General Airglow,J. Geophys. Res. 1976, 483.

    Google Scholar 

  • Chakrabarti, S.: 1985, ‘EUV (300–900 A) Spectrum of Polar Cap and Cusp Emissions Near Local Noon’,J. Geophys. Res. 90, 4421.

    Google Scholar 

  • Chakrabarti, S.: 1986, ‘Extreme and Far Ultraviolet Emissions from the Polar Cap’,J. Geophys. Res. 91, 8065.

    Google Scholar 

  • Chenette D. L. et al.: 1993, ‘Atmospheric Energy Input and Ionization by Energetic Electrons during the Geomagnetic Storm of 8–9 November 1991’,Geophys. Res. Letters 20, 1323.

    Google Scholar 

  • Christensen, A. B., and Karas, R., ‘Energy Spectra of Precipitating Electrons from Observations of Optical Aurora, Bremsstrahlung X Rays, and Auroral Absorption’,J. Geophys. Res. 75, 4266.

  • Chubb, T. A., and Hicks, G. T.: 1970, ‘Observations of the Aurora in the Far Ultraviolet from OGO 4’,J. Geophys. Res. 75, 1290.

    Google Scholar 

  • Crosswhite, H. M., Zipf, E. C., Jr., and Fastie, W. G.: 1962, ‘Far Ultraviolet Auroral Spectra’,J. Opt. Soc. Amer. 52, 643.

    Google Scholar 

  • Daniell, R. E., Jr., and Strickland, D. J.: 1986, ‘Dependence of Auroral Middle UV Emissions on the Incident Electron Spectrum and Neutral Atmosphere’,J. Geophys. Res. 91, 321.

    Google Scholar 

  • Datlowe, D. W., Imhof, W. L., and Voss, H. D. 1988, ‘X Ray Spectral Images of Energetic Electrons Precipitating in the Auroral Zone’,J. Geophys. Res. 93, 8662.

    Google Scholar 

  • Eather, R. H.: 1967, ‘Auroral Proton Precipitation and Hydrogen Emissions’,Rev. Geophys. 5, 207.

    Google Scholar 

  • Eather, R. H.: 1968, ‘Spectral Intensity Ratios in Proton-induced Auroras’,J. Geophys. Res. 73, 119.

    Google Scholar 

  • Eather, R. H.: 1969, ‘Latitudinal Distributions of Auroral And Airglow Emission: The Soft Auroral Zone’,J. Geophys. Res. 74, 153.

    Google Scholar 

  • Eather, R. H. and Burrows, K. M.: 1966, ‘Excitation and Ionization by Auroral Protons’,Aust. J. Phys. 19, 309.

    Google Scholar 

  • Eather, R. H. and Mende, S. B.: 1971, ‘Airborne Observations of Auroral Precipitation Patterns’,J. Geophys. Res. 76, 1746.

    Google Scholar 

  • Evans, D. S.: 1974, ‘Precipitating Electron Fluxes Formed by a Magnetic Field-Aligned Potential Difference’,J. Geophys. Res. 79, 2853.

    Google Scholar 

  • Evans, D. S.: 1984, in J. A. Holtet and A. Egeland (eds.), ‘The Characteristics of a Persistent Auroral Arc at High Latitude in the 1400 MLT Sector’, inPolar Cusp, NATO Adv. Sci. Inst. Ser., Ser. C 145, 99.

  • Evans, R. D.: 1955,The Atomic Nucleus, McGraw-Hill, New York.

    Google Scholar 

  • Feldman, P. D.: 1978, ‘Auroral Excitation of Optical Emissions of Atomic and Molecular Oxygen’,J. Geophys. Res. 83, 2511.

    Google Scholar 

  • Feldman, P. D. and Doering, J. P.: 1975, ‘Auroral Electrons and the Optical Emissions of Nitrogen’,J. Geophys. Res. 80, 2808.

    Google Scholar 

  • Feldman, P. D. and Gentieu, E. P.: 1982, ‘The Ultraviolet Spectrum of an Aurora 530–1520 A’,J. Geophys. Res. 87, 2453.

    Google Scholar 

  • Feldman, P. D., Doering, J. P., and Moore, J. H.: 1971, ‘Rocket Measurement of the Secondary Electron Spectrum in an Aurora’,J. Geophys. Res. 76, 1738.

    Google Scholar 

  • Frank, L.A., Craven, J. D., Ackerson K. L., English, M. R., Eather, R. H., and Carovillano, R. L.: 1981, ‘Global Auroral Imaging Instrumentation for the Dynamics Explorer Mission’,Space Sci. Instru. 5, 369.

    Google Scholar 

  • Frank, L.A., Craven, J. D., Burch, J. L., and Winningham, J. D.: 1982, ‘Polar Views of the Earth's Aurora with Dynamics Explorer’,Geophys. Res. Letters 9, 1001.

    Google Scholar 

  • Frank, L. A., Craven, J. D., Gurnett, D. A., Shawhan, S. D., Weimer, D. R., Burch, J. L., Winningham, J. D., Chappell, C. R., Waite, J. H., Heelis, R. A., Maynard, N. C., Sugiura, M., Peterson, W. K., and Shelley, E. G.: 1986, ‘The Theta Aurora’,J. Geophys. Res. 91, 3177.

    Google Scholar 

  • Fung, S. F. and Hoffman, R. A.: 1988, ‘On the Spectrum of the Secondary Auroral Electrons’,J. Geophys. Res. 93, 2715.

    Google Scholar 

  • Gaines, E. E., Imhof, W. L., Francis, W. E., Walt, M., and Rosenberg, T. J.: 1986, ‘Correlated Electron and X Ray Measurements of Quiet Time Electron Precipitation: A Comparative Study of Bremsstrahlung Production and Transport in the Atmosphere’,J. Geophys. Res. 91, 13,455.

    Google Scholar 

  • Gattinger, R. L., Vallance-Jones, A., Hecht, J. H., Strickland, D. J., and Kelly, J.: 1991, ‘Comparison of Ground-Based Optical Observations of N2 Second Positive to N +2 First Negative Emission Ratios With Electron Precipitation Energies Inferred From the Sondre Stromfjord Radar’,J. Geophys. Res. 96, 11,341.

    Google Scholar 

  • Germany, G. A., Torr, M. R., Richards, P. G., and Torr, D. G.: 1990, ‘The Dependence of Modeled OI 1356 and N2 Lyman Birge Hopfield Auroral Emissions on the Neutral Atmosphere’,J. Geophys. Res. 95, 7725.

    Google Scholar 

  • Goldberg, R. A., Barcus, J. R., Treinish, L. A., and Vondrak, R. R.: 1982, ‘Mapping of Auroral X-Rays from Rocket Overflights’,J. Geophys. Res. 87, 2509.

    Google Scholar 

  • Grun, A. E., 1957, ‘Lumineszenz-photometische Messungen der Energie-Absorption im Strahlungs-feld von Electronquellen, Eindimensionaler Fall in Luft’,Z. Naturforsch, Ser. A12, 89.

    Google Scholar 

  • Hardy, D., Burke, W. J., and Gussenhoven, M. S.: 1982, ‘Optical and Electron Measurements in the Vicinity of Polar Cap Arcs’,J. Geophys. Res. 87, 2413.

    Google Scholar 

  • Hartz, T. R. and Brice, N. M.: 1967, ‘The General Pattern of Auroral Particle Precipitation’,Planetary Space Sci. 15, 301.

    Article  Google Scholar 

  • Hecht, J. H., Christensen, A. B., and Pranke, J. B.: 1985, ‘High Resolution Auroral Observations of the OI(7774) and OI(8446) Multiplets’,Geophys. Res. Letters 12, 605.

    Google Scholar 

  • Hecht, J. H., Christensen, A. B., Strickland, D. J., and Meier, R. R.: 1989, ‘Deducing Composition and Incident Electron Spectra From Ground-Based Auroral Optical Measurements: Variations in Oxygen Density’,J. Geophys. Res. 94, 13,553.

    Google Scholar 

  • Hecht, J. H., Strickland, D. J., Christensen, A. B, Kayser, D. C., and Walterscheid, R. L.: 1991, ‘Lower Thermospheric Composition Changes Derived From Optical And Radar Data Taken at Sondre Stromfjord During the Great Magnetic Storm of February 1986’,J. Geophys. Res. 96, 5757.

    Google Scholar 

  • Henriksen, K.: 1979, ‘Variations of Proton Energy and Pitch Angle Spectra in the Upper Atmosphere’,J. Atmospheric. Terrest. Phys. 41, 633.

    Article  Google Scholar 

  • Hofmann, D. J., and Greene, R. A.: 1972, ‘Balloon Observations of Simultaneous Auroral X-Ray and Visible Bursts’,J. Geophys. Res. 77, 776.

    Google Scholar 

  • Huffman, R. E., LeBlanc, F. J. Larrabee, J. C., and Paulsen, D. E.: 1980, ‘Satellite Vacuum Ultraviolet Airglow and Auroral Observations’,J. Geophys. Res. 85, 2201.

    Google Scholar 

  • Imhof, W. L., Nakano, G. H., and Reagan, J. B.: 1974, ‘Satellite Observations of Bremsstrahlung from Widespread Energetic Electron Precipitation’,J. Geophys. Res. 79, 565.

    Google Scholar 

  • Imhof, W. L., Nakano, G. H., and Reagan, J. B.: 1975, ‘Observations of X Rays Associated With Energetic Electron Precipitation Near the Trapping Boundary’,J. Geophys. Res. 80, 3629.

    Google Scholar 

  • Imhof, W. L., Kilner, J. R., Nakano, G. H., and Reagan, J. B.: 1980, ‘Satellite X Ray Mappings of Sporadic Auroral Zone Electron Precipitation Events in the Local Dusk Sector’,J. Geophys. Res. 85, 3347.

    Google Scholar 

  • Imhof, W. L., Stadsnes, J., Kilner, J. R., Datlowe, D. W., Nakano, G. H., Reagan, J. B., and Stauning, P.: 1982a. ‘Mappings of Energetic Electron Precipitation Following Substorms Using the Satellite Bremsstrahlung Technique’,J. Geophys. Res. 87, 671.

    Google Scholar 

  • Imhof, W. L., Stadsnes, J., Reagan, J. B., Kilner, J. R., Gaines, E. E., Datlowe, D. W., Mobilia, J., and Nakano, G. H.: 1982b, ‘Satellite Bremsstrahlung X Ray Measurements at the Onset of a Magnetospheric Substorm’,J. Geophys. Res. 87, 8149.

    Google Scholar 

  • Imhof, W. L., Kilner, J. R., and Reagan, J. B.: 1985, ‘Morphological Study of Energetic Electron Precipitation Events Using the Satellite Bremsstrahlung X Ray Technique’,J. Geophys. Res. 90, 1543.

    Google Scholar 

  • Imhof, W. L., Voss, H. D., Mobilia, J., and Datlowe, D. W.: 1987, ‘Bremsstrahlung X Ray Mappings of an Intense, Widespread, and Pulsating Electron Precipitation Event Following a Sudden Commencement’,J. Geophys. Res. 92, 1211.

    Google Scholar 

  • Ishimoto, M., Meng, C.-I., Romick, G. J., and Huffman, R. E.: 1988, ‘Auroral Electron Energy and Flux From Molecular Nitrogen Ultraviolet Emissions Observed by the S3–4 Satellite’,J. Geophys. Res. 93, 9854.

    Google Scholar 

  • Isler, R. C., and Fastie, W. G.: 1965, ‘An Observation of the Lyman Birge Hopfield System in an Aurora’,J. Geophys. Res. 70, 2613.

    Google Scholar 

  • Jacchia, L. G.: 1977, ‘Thermospheric Temperatures, Density, and Composition: New Models’,Spec. Rep. 375, Smithsonian Astrophys. Observ., Cambridge, MA.

    Google Scholar 

  • Jasperse, J. R., and Basu, B.: 1982, ‘Transport Theoretic Solutions for Auroral Proton and H Atom Fluxes and Related Quantities’,J. Geophys. Res. 87, 811.

    Google Scholar 

  • Kamide, Y., Craven, J. D., Frank, L. A., Ahn, B.-H., and Akasofu, S.-I.: 1986, ‘Modeling Substorm Current Systems Using Conductivity Distributions Inferred from DE Auroral Imager’,J. Geophys. Res. 91, 11235.

    Google Scholar 

  • Kasting, J. F., and Hays, P. B.: 1977, ‘A Comparison Between N +2 4278-A Emission and Electron Flux in the Auroral Zone’,J. Geophys. Res. 82, 3319.

    Google Scholar 

  • Link, R., McConnell, J. C., and Shepherd, G. G.: 1981, ‘A Self-Consistent Evaluation of the Rate Constants for the Production of the OI 6300 A Airglow’,Planetary Space Sci. 29, 589.

    Article  Google Scholar 

  • Luhmann, J. G.: 1977, ‘Auroral Bremsstrahlung Spectra in the Atmosphere’,J. Atmospheric Terrest. Phys. 39, 595.

    Article  Google Scholar 

  • Lui, A. T. Y., Anger, C. D., Venkatesan, D., and Sawchuk, W.: 1975, ‘The Topology of the Auroral Oval As Seen by the Isis 2 Scanning Auroral Photometer’,J. Geophys. Res. 80, 1795.

    Google Scholar 

  • Lui, A. T. Y., Venkatesan, D., Anger, C. D., Akasofu, S.-I., Heikkila, W. J., Winningham, J. D., and Burrows, J. R.: 1977, ‘Simultaneous Observations of Particle Precipitations and Auroral Emissions By the ISIS 2 Satellite in the 19–24 MLT Sector’,J. Geophys. Res. 82, 2210.

    Google Scholar 

  • Mauk, B. H., Chin, J., and Parks, G.: 1981, ‘Auroral X Ray Images’,J. Geophys. Res. 86, 6827.

    Google Scholar 

  • McEwen, D. J., and Sivjee, G. G.: 1972, ‘Rocket Measurements of Electron Influx during a Major Magnetic Storm with Type A Aurora’,J. Geophys. Res. 77, 5523.

    Google Scholar 

  • Meier, R. R.: 1991, ‘Ultraviolet Spectroscopy and Remote Sensing of the Upper Atmosphere’,Space Science Reviews 58, 1.

    Article  Google Scholar 

  • Meier, R. R., Conway, R. R., Feldman, P. D., Strickland, D. J., and Gentieu, E. P.: 1982, ‘Analysis of Nitrogen and Oxygen Far Ultraviolet Auroral Emissions’,J. Geophys. Res. 87, 2444.

    Google Scholar 

  • Meier, R. R., Strickland, D. J., Hecht, J. H., and Christensen, A. B.: 1989, ‘Deducing Composition and Incident Electron Spectra From Ground-Based Auroral Optical Measurements: A Study of Auroral Red Line Processes’,J. Geophys. Res. 94, 13,541.

    Google Scholar 

  • Mende, S. B. and Eather, R. H.: 1975, ‘Spectroscopic Determination of the Characteristics of Precipitating Auroral Particles’,J. Geophys. Res. 80, 3211.

    Google Scholar 

  • Mende, S. B., Eather, R. H., Rees, M. H., Vondrak, R. R., and Robinson, R. M.: 1984, ‘Optical Mapping of Ionospheric Conductance’,J. Geophys. Res. 89, 1755.

    Google Scholar 

  • Meng, C.-I. and Chakrabarti, S.: 1985, ‘Extreme Ultraviolet Emissions for Monitoring Auroras in Dark and Daylight Hemispheres’,J. Geophys. Res. 90, 4261.

    Google Scholar 

  • Meng, C.-I. and Huffman, R. E.: 1984, ‘Ultraviolet Imaging from Space of the Aurora Under Full Sunlight’,Geophys. Res. Letters 11, 315.

    Google Scholar 

  • Meng, C.-I. and Huffman, R. E.: 1987, ‘Preliminary Observations from the Auroral and Ionospheric Remote Sensing Imager’,APL Technical Digest 8, 303.

    Google Scholar 

  • Meng, C.-I., Snyder, A. L., and Kroehl, H. W.: 1978, ‘Observations of Auroral Westward Traveling Surges and Electron Precipitations’,J. Geophys. Res. 83, 575.

    Google Scholar 

  • Miller, R. E., Fastie, W. G., and Isler, R. C.: 1968, ‘Rocket Studies of Far-Ultraviolet Radiation in an Aurora’,J. Geophys. Res. 73, 3353.

    Google Scholar 

  • Mizera, P. F., Croley, D. R., Jr., Morse, F. A., and Vampola, A. L.: 1975, ‘Electron Fluxes and Correlations With Quiet Time Auroral Arcs’,J. Geophys. Res. 80, 2129.

    Google Scholar 

  • Mizera, P. F., J. G. Luhmann, Kolasinski, W. A., and Blake, J. B.: 1978, ‘Correlated Observations of Auroral Arcs, Electrons, and X Rays from a DMSP Satellite’,J. Geophys. Res. 83, 5573.

    Google Scholar 

  • Mizera, P. F., Kolasinski, W. A., Gorney, D. J., and Roeder, J. L.: 1985, ‘An Auroral X-Ray Imaging Spectrometer’,J. Spacecraft 22, 514.

    Google Scholar 

  • Newell, P. T. and Meng, C.-I.: 1988, ‘The Cusp and the Cleft/Boundary Layer: Low-Altitude Identification and Statistical Local Time Variation’,J. Geophys. Res. 93, 14,549.

    Google Scholar 

  • Ono, T.: 1993, ‘Derivation of Energy Parameters of Precipitating Auroral Electrons by Using the Intensity Ratios of Auroral Emissions’,J. Geomag. Geoelectr. 45, 455.

    Google Scholar 

  • Ono, T. and Hirasawa, T.: 1992, ‘An Apparent Lifetime of Auroral 630.0 nm (OI) Emissions’,J. Geomag. Geoelectr. 44, 91.

    Google Scholar 

  • Opal, C. B., Moos, H. W., and Fastie, W. G.: 1970, ‘Far-Ultraviolet Altitude Profiles and Molecular Oxygen Densities in an Aurora’,J. Geophys. Res. 75, 788.

    Google Scholar 

  • Paresce F., Lampton, M., and Holberg, J.: 1972, ‘Extreme Ultraviolet Emissions from an Aurora’,J. Geophys. Res. 77, 4773.

    Google Scholar 

  • Paresce, F., Chakrabarti, S., Bowyer, S., and Kimble, R.: 1983a, ‘The Extreme Ultraviolet Spectrum of Dayside and Nightside Aurorae: 800–1400 A’,J. Geophys. Res. 88, 4905.

    Google Scholar 

  • Paresce, F., Chakrabarti, S., Kimble, R., and Bowyer, S.: 1983b, ‘The 300 to 900-A Spectrum of a Nightside Aurora’,J. Geophys. Res. 88, 10,247.

    Google Scholar 

  • Parkinson, T. D. and Zipf, E. C.: 1970, ‘Energy Transfer from N2(A3 +u ) as a Source of O(1s) in the Aurora’,Planetary Space Sci. 18, 895.

    Article  Google Scholar 

  • Parks, G. K.: 1967, ‘Spatial Characteristics of Auroral Zone X-ray Microbursts’,J. Geophys. Res. 72, 215.

    Google Scholar 

  • Peek, H. M.: 1970, ‘Vacuum Ultraviolet Emissions from Auroras’,J. Geophys. Res. 75, 6209.

    Google Scholar 

  • Piper, L. G., Caledonia, G. E., and Kennealy, J. P.: 1981, ‘Rate constants for deactivation of N2(A3 +u ,v′=0, 1) by O,J. Chem. Phys. 75, 2847.

    Article  Google Scholar 

  • Reasoner, D. L., Eather, R. H., and O'Brien, B. J.: 1968, ‘Detection of Alpha Particles in Auroral Phenomena’,J. Geophys. Res. 73, 4185.

    Google Scholar 

  • Rees, M. H.: 1963, ‘Auroral Ionization and Excitation by Incident Energetic Electrons’,Planetary Space Sci. 11, 1209.

    Article  Google Scholar 

  • Rees, M. H.: 1964, ‘Ionization in the Earth's Atmosphere by Aurorally Associated Bremsstrahlung X-rays’,Planetary Space Sci. 12, 1093.

    Article  Google Scholar 

  • Rees, M. H.: 1982, ‘On the Interaction of Auroral Protons with the Earth's Atmosphere’,Planetary Space Sci. 30, 463.

    Article  Google Scholar 

  • Rees, M. H. and Luckey, D.: 1974, ‘Auroral Electron Energy Derived From Ratio of Spectroscopic Emissions, 1. Model Computations’,J. Geophys. Res. 79, 5182.

    Google Scholar 

  • Rees, M. H. and Lummerzheim, D.: 1989, ‘Characteristics of Auroral Electron Precipitation Derived from Optical Spectroscopy’,J. Geophys. Res. 94, 6799.

    Google Scholar 

  • Rees, M.H., Stewart, A. I., and Walker, J. C. G.: 1969, ‘Secondary Electrons in Aurora’,Planetary Space Sci. 17, 1997.

    Article  Google Scholar 

  • Rees, M. H., Romick, G. J., Anderson, H. R., and Casserly, R. T., Jr.: 1976, ‘Calculation of Auroral Emissions From Measured Electron Precipitation: Comparison With Observation’,J. Geophys. Res. 81, 5091.

    Google Scholar 

  • Rees, M. H., Stewart, A. I., Sharp, W. E., Hays, P. B., Hoffman, R. A., Brace, L. H., Doering, J. P., and Peterson, W. K.: 1977, ‘Coordinated Rocket and Satellite Measurements of an Auroral Event, 1. Satellite Observations and Analysis’,J. Geophys. Res. 82, 2250.

    Google Scholar 

  • Robinson, R. M. and Vondrak, R. R.: 1984, ‘Measurements of E-region Ionization and Conductivity Produced by Solar Illumination at High Latitudes’,J. Geophys. Res. 89, 3951.

    Google Scholar 

  • Robinson, R. M. and Vondrak, R. R.: 1985, ‘Characteristics and Sources of Ionization in the Continuous Aurora’,Radio Science 20, 447.

    Google Scholar 

  • Robinson, R. M., Clauer, C. R., de la Beaujardiere, O., Kelly, J. D.: 1986, ‘IMFB y Control of Ionization and Electric Fields Measured by the Sondrestrom Radar’, inSolar Wind-Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, Terra Scientific Publishing Company, Tokyo, 507.

    Google Scholar 

  • Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., and Hardy, D.: 1987, ‘On Calculating Ionospheric Conductances from the Flux and Energy of Precipitating Electrons’,J. Geophys. Res. 92, 2565.

    Google Scholar 

  • Robinson, R. M., Davidson, G. T., Vondrak, R. R., Francis, W. E., and Walt, M.: 1989 ‘A Technique for Interpretation of Auroral Bremsstrahlung X-ray Spectra,Planetary Space Sci. 37, 1053.

    Article  Google Scholar 

  • Robinson, R. M., Vondrak, R. R., Craven, J. D., Frank, L. A., and Miller, K.: 1989, ‘A comparison of Ionospheric Electron Densities and Auroral Luminosities Observed Simultaneously With the Chatanika Radar and the DE-1 Auroral Imagers’,J. Geophys. Res. 94, 5382.

    Google Scholar 

  • Robinson, R. M., Dabbs, T., Vickrey, J., Eastes, R., Del Greco, F., Huffman, R., Meng, C., Daniell, R., Strickland, D., and Vondrak, R.: 1992, ‘Coordinated Measurements Made by the Sondrestrom Radar and the Polar Bear Ultraviolet Imager’,J. Geophys. Res. 97, 2863.

    Google Scholar 

  • Romick, G. J. and Sharp, R. D.: 1967, ‘Simultaneous Measurements of an Incident Hydrogen Flux and the Resulting Hydrogen Balmer Alpha Emission in an Auroral Hydrogen Arc’,J. Geophys. Res. 72, 4791.

    Google Scholar 

  • Rosenberg, T. J., Bjordal, J., Trefall, H., Kvifte, G. J., Omholt, A., and Egeland, A.: 1971, ‘Correlation Study of Auroral Luminosity and X Rays’,J. Geophys. Res. 76, 122.

    Google Scholar 

  • Rusch, D. W., Gerard, J.-C., and Sharp, W. E.: 1978, ‘The Reaction of N(2D) with O2 as a source of O(1D) Atoms in Aurorae’,Geophys. Res. Letters 5, 1043.

    Google Scholar 

  • Schenkel, F. W. and Ogorzalek, B. S.: 1987, ‘Auroral Images From Space: Imagery, Spectroscopy, and Photometry’,Johns Hopkins APL Tech. Dig. 8, 308.

    Google Scholar 

  • Sharp, W. E.: 1971, ‘Rocket-Borne Spectroscopic Measurements in the Ultraviolet Aurora: Nitrogen Vegard-Kaplan Bands’,J. Geophys. Res. 76, 987.

    Google Scholar 

  • Sharp, W. E. and Hays, P. B.: 1974, ‘Low-Energy Auroral Electrons’,J. Geophys. Res. 79, 4319.

    Google Scholar 

  • Sharp, W. E. and Rees, M. H.: 1972, ‘Auroral Spectrum between 1200 and 4000 Angstroms’,J. Geophys. Res. 77, 1810.

    Google Scholar 

  • Sharp, W. E. and Torr, D. G.: 1979, ‘Determination of the Auroral O(1S) Production Sources from Coordinated Rocket and Satellite Measurements’,J. Geophys. Res. 84, 5345.

    Google Scholar 

  • Sharp, W. E., Rees, M. H., and Stewart, A. I.: 1979, ‘Coordinated Rocket and Satellite Measurements of an Auroral Event, 2. The Rocket Observations and Analysis’,J. Geophys. Res. 84, 1977.

    Google Scholar 

  • Sharp, W. E., Ortland, D., and Cageao, R.: 1983, ‘Concerning Sources of O(1D) in Aurora: Electron Impact and Dissociative Recombination’,J. Geophys. Res. 88, 3229.

    Google Scholar 

  • Shepherd, M. M. and Eather, R. H.: 1976, ‘On the Determination of Auroral Electron Energies and Fluxes From Optical Spectral Measurements’,J. Geophys. Res.,81, 1407.

    Google Scholar 

  • Shepherd, G. G., Anger, C. D., Brace, L. A., Burrows, J. R., Heikkila, W. J., Hoffman, J., Maler, E. J., and Whitteker, J. H.: 1973, ‘An Observation of Polar Aurora and Airglow from the ISIS-2 Spacecraft’,Planetary Space Sci. 21, 819.

    Article  Google Scholar 

  • Shepherd, G. G., Winningham, J. D., Bunn, F. E., and Thirkettle, F. W.: 1980, ‘An Empirical Determination of the Production Efficiency for Auroral 6300 A Emission by Energetic Electrons’,J. Geophys. Res. 85, 715.

    Google Scholar 

  • Snyder, A. L., Jr. and Akasofu, S.-I.: 1976, ‘Auroral Oval Photographs From the DMSP 8531 and 10533 Satellites’,J. Geophys. Res. 81, 1799.

    Google Scholar 

  • Solomon, S. C.: 1989, ‘Auroral Excitation of the N2 2P(0,0) and VK(0,9) Bands’,J. Geophys. Res. 94, 17,215.

    Google Scholar 

  • Solomon, S. C., Hays, P. B., and Abreu, V. J.: 1988, ‘The Auroral 6300 A Emission: Observations and Modeling’,J. Geophys. Res. 93, 9867.

    Google Scholar 

  • Steele, D. P. and McEwen, D. J.: 1990, ‘Electron Auroral Excitation Efficiencies and Intensity Ratios’,J. Geophys. Res. 95, 10,321.

    Google Scholar 

  • Steele, D. P., McEwen, D. J., and Murphree, J. S.: 1992, ‘On the Possibility of Auroral Remote Sensing With the Viking Ultraviolet Imager’,J. Geophys. Res. 97, 2845.

    Google Scholar 

  • Strickland, D. J., Book, D. L., Coffey, T. P., and Fedder, J. A.: 1976, ‘Transport Equation Techniques for the Deposition of Auroral Electrons’,J. Geophys. Res. 81, 2755.

    Google Scholar 

  • Strickland, D. J., Jasperse, J. R., and Whalen, J. A.: 1983, Dependence of Auroral FUV Emissions on the Incident Electron Spectrum and Neutral Atmosphere’,J. Geophys. Res. 88, 8051.

    Google Scholar 

  • Strickland, D. J., Meier, R. R., Hecht, J. H., and Christensen, A. B.: 1989, ‘Deducing Composition and Incident Electron Spectra From Ground-Based Auroral Optical Measurements: Theory and Model Results’,J. Geophys. Res. 94, 13,527.

    Google Scholar 

  • Vallance-Jones, A.: 1974,Aurora, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Vallance-Jones, A., Gattinger, R. L., Shih, P., Meriwether, J. W., Wickwar, V. B., and Kelly, J., 1987, ‘Optical and Radar Characterization of a Short-lived Auroral Event at High Latitude’,J. Geophys. Res. 92, 4575.

    Google Scholar 

  • Vickrey, J. F., Vondrak, R. R., and Matthews, S. J.: 1982, ‘Energy Deposition by Precipitating Particles and Joule Dissipation in the Auroral Ionosphere’,J. Geophys. Res. 87, 5184.

    Google Scholar 

  • Vij, K. K., Venkatesan, D., Sheldon, W. R., Kern, J. W., Benbrook, J. R., Whalen, B. A.: 1975a, ‘Simultaneous Investigation of Parent Electrons and Bremsstrahlung X Rays by Rocket-Borne Detectors’,J. Geophys. Res. 80, 2869.

    Google Scholar 

  • Vij, K. K., Venkatesan, D., and Anger, C. D.: 1975b, ‘Investigation of Electron Precipitation During an Auroral Substorm by Rocket- Borne Detectors’,J. Geophys. Res. 80, 3205.

    Google Scholar 

  • Vij, K. K., Vogel, J. S., and Venkatesan, D.: 1980, ‘Auroral X Ray Observations at 60 to 30 km Altitudes’,J. Geophys. Res. 85, 5096.

    Google Scholar 

  • Vondrak, R. R. and D. J. Gorney: 1986, ‘Remote Sensing of Auroral Particle Precipitation Using X-rays,Proceedings of the ESA/BNSC/CNES Workshop on Solar Terrestrial Physics on Space Station/Columbus, 14–15 October 1986, Rutherford Appleton Laboratory, Chilton Didcot, UK, 65–73.

    Google Scholar 

  • Vondrak, R. R. and Robinson, R. M.: 1985, ‘Inference of High Latitude Ionization and Conductivity from AE-C Measurements of Auroral Electron Fluxes’,J. Geophys. Res. 90, 7505.

    Google Scholar 

  • Vondrak, R. R. and Sears, R. D.: 1978, ‘Comparison of Incoherent Scatter Radar and Photometric Measurements of the Energy Distribution of Auroral Electrons’,J. Geophys. Res. 83, 1665.

    Google Scholar 

  • Vondrak, R. R., Murphree, J. S., and Anger, C. D.: 1985, ‘Remote Sensing of High Latitude Ionization With the ISIS-2 Auroral Scanning Photometer’,Radio Science 20, 439.

    Google Scholar 

  • Vondrak, R. R., Robinson, R. M., Mizera, P. F., and Gorney, D. J.: 1988 ‘X-ray Spectrophotometric Remote Sensing of Auroral Ionization’,Radio Science 23, 537.

    Google Scholar 

  • Walt, M., MacDonald, W. M., and Francis, W. E.: 1967, ‘Penetration of Auroral Electrons Into the Atmosphere’, inPhysics of the Magnetosphere, edited by R. L. Carovillano, J. F. McClay and H. R. Radoski, D. Reidel, Dordrecht, Netherlands, p. 534.

    Google Scholar 

  • Walt, M., Newkirk, L. L., and Francis, W. E.: 1979, ‘Bremsstrahlung Produced by Precipitating Electrons’,J. Geophys. Res. 84, 967.

    Google Scholar 

  • Wax, R. L. and Bernstein, W.: 1970, ‘Rocket-Borne Measurements of Hß Emissions and Energetic Hydrogen Fluxes during an Auroral Breakup’. J. Geophvs. Rex75, 783.

    Google Scholar 

  • Whalen, J. A.: 1983, ‘A Quantitative Description of the Spatial Distribution and Dynamics of the Energy Flux in the Continuous Aurora’, J. Geophvs. Res.88, 7155.

    Google Scholar 

  • Wickwar, V. B., Baron, M. J., and Sears, R. D.: 1975, ‘Auroral Energy Input From Energetic Electrons and Joule Heating at Chatanika’, J. Geophys. Res.80, 4364.

    Google Scholar 

  • Zipf, E. C., and Erdman, P. W.: 1985, ‘Electron Impact Excitation of Atomic Oxygen: Revised Cross Sections’, J. Geophvs. Res.90, 11,087.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, R.M., Vondrak, R.R. Validation of techniques for space based remote sensing of auroral precipitation and its ionospheric effects. Space Sci Rev 69, 331–407 (1994). https://doi.org/10.1007/BF02101699

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101699

Keywords

Navigation