Skip to main content

Abstract

Since several decades, microwave radiometers have been an essential component of the satellite observation system, enabling the retrieval of a multitude of parameters. Conical scanning imagers are mainly dedicated to deriving characteristics of the Earth's surface, e. g., soil moisture, sea-surface temperature, salinity, and sea ice. For this purpose, they make use of channels at low frequencies where the atmosphere is relatively transparent. By exploiting the differential absorption along pressure-broadened rotational lines, coarse resolution vertical profiles of water vapor and temperature can be derived from microwave sounders observing along the wings of atmospheric absorption lines. Furthermore, clouds and precipitation produce distinct spectral signatures in the microwave region, which can be best used over ocean surfaces that have a lower surface emissivity than land. Due to the rather long wavelengths, the spatial resolution of microwave satellite instruments is relatively poor, of the order of 10 km or more. By deploying microwave radiometers onboard aircrafts, much finer resolution can be achieved, which allows dedicated process studies. Microwave instruments flown on several polar orbiting satellites are an essential ingredient into today’s numerical weather prediction, and their measurements are assimilated directly as radiances by several meteorological services worldwide. With measurements having been available for more than three decades, microwave observations are starting to play an important role in monitoring and understanding the effects of climate change, such as the melting of the polar ice caps. With the upcoming new generation of satellites, the frequency range of the measurements is expanded into the submillimeter range to better capture ice clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.J. Geer, B. Fabrizio, N. Bormann, S. English: All-Sky Assimilation of Microwave Humidity Sounders, European Centre for Medium-Range Weather Forecasts Newsletter 2014). https://www.ecmwf.int/sites/default/files/elibrary/2014/17339-all-sky-assimilation-microwave-humidity-sounders.pdf, Accessed 15 July 2021

    Google Scholar 

  • S. Schnitt, E. Orlandi, M. Mech, A. Ehrlich, S. Crewell: Characterisation of water vapor and clouds during the next-generation aircraft remote-sensing for validation (NARVAL)-south studies, IEEE J. Sel. Top. Earth Obs. Remote Sens. (JSTARS) 10(7), 3114–3124 (2017)

    Article  Google Scholar 

  • P.W. Gaiser, K.M. St. Germain, E.M. Twarog, G.A. Poe, W. Purdy, D. Richardson, W.L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R.M. Bevilacqua: The windsat Spaceborne polarimetric microwave radiometer: sensor description and early orbit performance, IEEE Trans. Geosci. Remote Sens. 42(11), 2347–2361 (2004)

    Article  Google Scholar 

  • Q. Liu, F. Weng, S. English: An improved fast microwave water emissivity model, IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2001)

    Article  Google Scholar 

  • F. Aires, C. Prigent, F. Bernardo, C. Jimenez, R. Saunders, P. Brunel: A tool to estimate land-surface Emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. R. Meteorol. Soc. 137, 690–699 (2011)

    Article  Google Scholar 

  • D. Wang, C. Prigent, L. Kilic, S. Fox, C. Harlow, C. Jimenez, F. Aires, C. Grassotti, F. Karbou: Surface emissivity at microwaves to millimeter waves over polar regions: parameterization and evaluation with aircraft experiments, J. Atmos. Ocean. Technol. 34(5), 1039–1059 (2017)

    Article  Google Scholar 

  • H. Brogniez, S. English, J.-F. Mahfouf, A. Berendt, W. Berg, S. Boukabara, S.A. Buehler, P. Chambon, A. Gambacorta, A. Geer, W. Ingram, E.R. Kursinski, M. Matricardi, T.A. Odintsova, V.H. Payne, P.W. Thorne, M.Y. Tretyakov, J. Wang: A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz, Atmos. Meas. Tech. 9, 2207–2221 (2016)

    Article  Google Scholar 

  • N.C. Grody: Classification of snow cover and precipitation using the Special Sensor Microwave Imager, J. Geophys. Res. 96, 7423–7435 (1991)

    Article  Google Scholar 

  • H. Meng, J. Dong, R. Ferraro, B. Yan, L. Zhao, C. Kongoli, N. Wang, B. Zavodsky: A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers, J. Geophys. Res. 122, 6520–6540 (2017)

    Article  Google Scholar 

  • D.H. Staelin, A.H. Barrett, J.W. Waters, F.T. Barath, E.J. Johnston, P.W. Rosenkranz, N.E. Gaut, W.B. Lenoir: Microwave spectrometer on the Nimbus 5 satellite: meteorological and geophysical data, Science 182(4119), 1339–1341 (1973)

    Article  Google Scholar 

  • P. Gloersen, F.T. Barath: A scanning multichannel microwave radiometer for Nimbus-G and SeaSat-A, IEEE J. Ocean. Eng. 2, 172–178 (1977)

    Article  Google Scholar 

  • R.F. Adler, G. Gu, M. Sapiano, J.J. Wang, G.J. Huffman: Global precipitation: means, variations and trends during the satellite era (1979–2014), Surv. Geophys. 38(4), 679–699 (2017)

    Article  Google Scholar 

  • F.T. Ulaby, D.G. Long: Microwave Radar and Radiometric Remote Sensing (ARTECH House, Boston 2015)

    Google Scholar 

  • R.M. Goody, Y.L. Yung: Atmospheric Radiation, Theoretical Basis, 2nd edn. (Oxford Univ., Oxford 1995) p. 544

    Google Scholar 

  • G.W. Petty: A First Course in Atmospheric Radiation, 2nd edn. (Sundog Publishing, Madison 2006) p. 459

    Google Scholar 

  • S.A. Buehler, J. Mendrok, P. Eriksson, A. Perrin, R. Larsson, O. Lemke: ARTS, the Atmospheric Radiative Transfer Simulator—Version 2.2, the Planetary Toolbox edition, Geosci. Model Dev. 11(4), 1537–1556 (2018)

    Article  Google Scholar 

  • R. Saunders, J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, N. Bormann, C. Lupu: An update on the RTTOV Fast Radiative Transfer Model, Geosci. Model Dev. 11, 2717–2737 (2018)

    Article  Google Scholar 

  • W.J. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, C. Prigent: New permittivity measurements of seawater, Radio Sci. 33(3), 639–648 (1998)

    Article  Google Scholar 

  • C. Prigent, F. Aires, D. Wang, S. Fox, C. Harlow: Sea surface emissivity parameterization from microwaves to millimeter waves, Q. J. R. Meteorol. Soc. 143, 596–605 (2017)

    Article  Google Scholar 

  • V.H. Payne, E.J. Mlawer, K.E. Cady-Pereira, J.-L. Moncet: Water vapor continuum absorption in the microwave, IEEE Trans. Geosci. Remote Sens. 49(6), 2194–2208 (2011)

    Article  Google Scholar 

  • P.W. Rosenkranz: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci. 33(4), 919–928 (1998)

    Article  Google Scholar 

  • H.J. Liebe, G.A. Hufford, M.G. Cotton: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In: AGARD, Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation, 542,1993) pp. 3.1–3.11

    Google Scholar 

  • L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino: The HITRAN Molecular Database: Editions of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transf. 48, 469–507 (1992)

    Article  Google Scholar 

  • M.Y. Tretyakov: Spectroscopy underlying microwave remote sensing of atmospheric water vapor, J. Mol. Spectrosc. 328, 7–26 (2016)

    Article  Google Scholar 

  • M.A. Janssen: Atmospheric Remote Sensing by Microwave Radiometry (J. Wiley & Sons, New York 1993) pp. 1–36

    Google Scholar 

  • D.D. Turner, S. Kneifel, M.P. Cadeddu: An improved liquid water absorption model at microwave frequencies for Supercooled liquid water clouds, J. Atmos. Oceanic Technol. 33, 33–44 (2016)

    Article  Google Scholar 

  • M.I. Mishchenko, L.D. Travis, D.W. Mackowski: T-matrix computations of light scattering by non-spherical particles: A review, J. Quant. Spectrosc. Radiat. Transf. 55, 535–575 (1996)

    Article  Google Scholar 

  • M.A. Yurkin, A.G. Hoekstra: The discrete dipole approximation: An overview and recent developments, J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 558–589 (2007)

    Article  Google Scholar 

  • P. Eriksson, R. Ekelund, J. Mendrok, M. Brath, O. Lemke, S.A. Buehler: A general database of Hydrometeor single scattering properties at microwave and sub-millimetre wavelengths, Earth Syst. Sci. Data 10, 1301–1326 (2018)

    Article  Google Scholar 

  • G. Hong, P. Yang, B.A. Baum, A.J. Heymsfield, F. Weng, Q. Liu, G. Heygster, S.A. Buehler: Scattering database in the millimeter and Submillimeter wave range of 100 − 1000 GHz for nonspherical ice particles, J. Geophys. Res. 114, D06201 (2009)

    Google Scholar 

  • G. Liu: A database of microwave single-scattering properties for nonspherical ice particles, Bull. Amer. Met. Soc. 89(10), 1563–1570 (2008)

    Article  Google Scholar 

  • J.W. Waters, W.G. Read, L. Froidevaux, R.F. Jarnot, R.E. Cofield, D.A. Flower, G.K. Lau, H.M. Pickett, M.L. Santee, D.L. Wu, M.A. Boyles, J.R. Burke, R.R. Lay, M.S. Loo, N.J. Livesey, T.A. Lungu, G.L. Manney, L.L. Nakamuru, V.S. Perun, B.P. Ridenoure, Z. Shippony, P.H. Siegel, R.P. Thurstans, R.S. Harwood, H.C. Pumphrey, M.J. Filipiak: The UARS and EOS microwave limb sounder (MLS) experiments, J. Atmos. Sci. 56(2), 194–218 (1999)

    Article  Google Scholar 

  • U. Frisk, M. Hagström, J. Ala-Laurinaho, S. Andersson, J.-C. Berges, J.-P. Chabaud, M. Dahlgren, A. Emrich, H.-G. Florén, G. Florin, M. Fredrixon, T. Gaier, R. Haas, T. Hirvonen, Å. Hjalmarsson, B. Jakobsson, P. Jukkala, P. Kildal, E. Kollberg, J. Lassing, A. Lecacheux, P. Lehikoinen, A. Lehto, J. Mallat, C. Marty, D. Michet, J. Narbonne, M. Nexon, M. Olberg, O. Olofsson, G. Olofsson, A. Origné, M. Petersson, P. Piironen, R. Pons, D. Pouliquen, I. Ristocelli, C. Rosolen, G. Rouaix, A.V. Räisänen, G. Serra, F. Sjoberg, L. Stenmark, S. Torchinsky, J. Tuovinen, C. Ullberg, E. Vinterhav, N. Wadefalk, H. Zirath, P. Zimmermann, R. Zimmermann: The Odin satellite: I. radiometer design and test, Astron. Astrophys. 402, 27–34 (2003)

    Article  Google Scholar 

  • R. Oliva, E. Daganzo, Y.H. Kerr, S. Mecklenburg, S. Nieto, P. Richaume, C. Gruhier: SMOS radio frequency interference scenario: status and actions taken to improve the RFI environment in the 1400–1427\,MHz passive band, IEEE Trans. Geosci. Remote Sens. 50(5), 1427–1439 (2012)

    Article  Google Scholar 

  • W. Berg, R. Kroodsma, C. Kummerow, D. McKague: Fundamental climate data records of microwave brightness temperatures, Remote Sens. 10(8), 1306 (2018)

    Article  Google Scholar 

  • R. Ferraro, B. Nelson, T. Smith, O. Prat: The AMSU-based hydrological bundle climate data record—description and comparison with other data sets, Remote Sens. 10(10), 1640 (2018)

    Article  Google Scholar 

  • E. Kim, C.H. Lyu, K. Anderson, R.V. Leslie, W.J. Blackwell: S-NPP ATMS instrument prelaunch and on-orbit performance evaluation, J. Geophys. Res. Atmos. 119(9), 5653–5670 (2014)

    Article  Google Scholar 

  • T. Mo: Post-launch calibration of the METOP-A advanced microwave sounding unit-A, IEEE Trans. Geosci. Remote Sens. 46(11), 3581–3600 (2008)

    Article  Google Scholar 

  • J.R. Eyre, G.A. Kelly, A.P. McNally, E. Andersson, A. Persson: Assimilation of TOVS radiance information through one-dimensional variational analysis, Q. J. R. Meteorol. Soc. 119(514), 1427–1463 (1993)

    Article  Google Scholar 

  • E. Gerard, R. Saunders: Four-dimensional variational assimilation of special sensor microwave/Imager total column water vapour in the ECMWF model, Q. J. R. Meteorol. Soc. 119(514), 1427–1463 (1993)

    Google Scholar 

  • P. Bauer, A. Geer, P. Lopez, D. Salmond: Direct 4D-Var assimilation of All-Sky radiances. Part I: Implementation, Q. J. R. Meteorol. Soc. 136(652), 1868–1885 (2010)

    Article  Google Scholar 

  • C. Cardinali: Monitoring the observation impact on the short-range forecast, Q. J. R. Meteorol. Soc. 135(638), 239–250 (2009)

    Article  Google Scholar 

  • C.A. Mears, D.K. Smith, L. Ricciardulli, J. Wang, H. Huelsing, F.J. Wentz: Construction and uncertainty estimation of a satellite-derived total precipitable water data record over the world's oceans, Earth Space Sci. 5, 197–210 (2018)

    Article  Google Scholar 

  • J.C. Comiso, W.N. Meier, R. Gersten: Variability and trends in the arctic sea ice cover: Results from different techniques, J. Geophys. Res. Oceans 122(8), 6883–6900 (2017)

    Article  Google Scholar 

  • W.J. Blackwell, S. Braun, R. Bennartz, C. Velden, M. DeMaria, R. Atlas, J. Dunion, F. Marks, R. Rogers, B. Annane, R.V. Leslie: An overview of the TROPICS NASA Earth Venture Mission, Q. J. R. Meteorol. Soc. 144(Suppl. 1), 16–26 (2018)

    Article  Google Scholar 

  • Colorado State University: Temporal Experiment for Storms and Tropical Systems (TEMPEST): https://tempest.colostate.edu/, Accessed 15 July 2021

  • Jet Propulsion Laboratory: CubeSat Radiometer Radio Frequency Interference Technology Validation mission https://www.jpl.nasa.gov/cubesat/missions/cuberrt.php, Accessed 15 July 2021

  • L. Kilic, C. Prigent, F. Aires, J. Boutin, G. Heygster, R.T. Tonboe, H. Roquet, C. Jimenez, C. Donlon: Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters, J. Geophys. Res. Ocean. 123(10), 7564–7580 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer for the helpful suggestions and Ana Radovan for producing Fig. 41.7a-d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Crewell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Crewell, S., Prigent, C., Mech, M. (2021). Spaceborne Microwave Radiometry. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_41

Download citation

Publish with us

Policies and ethics