Skip to main content
Log in

On the Bernoulli Property of Planar Hyperbolic Billiards

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider billiards in non-polygonal domains of the plane with boundary consisting of curves of three different types: straight segments, strictly convex inward curves and strictly convex outward curves of a special kind. The billiard map for these domains is known to have non-vanishing Lyapunov exponents a.e. provided that the distance between the curved components of the boundary is sufficiently large, and the set of orbits having collisions only with the flat part of the boundary has zero measure. Under a few additional conditions, we prove that there exists a full measure set of the billiard phase space such that each of its points has a neighborhood contained up to a zero measure set in one Bernoulli component of the billiard map. Using this result, we show that there exists a large class of planar hyperbolic billiards that have the Bernoulli property. This class includes the billiards in convex domains bounded by straight segments and strictly convex inward arcs constructed by Donnay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunimovich, L.A.: Billiards that are close to scattering billiards. Mat. Sb. (N.S.) 94(136), 49–73, 159 (1974)

  2. Bunimovich L.A.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65(3), 295–312 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bunimovich L.A.: Many dimensional nowhere dispersing billiards with chaotic behavior. Phys. D 33, 58–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bunimovich L.A.: A theorem on ergodicity of two-dimensional hyperbolic billiards. Commun. Math. Phys. 130(3), 599–621 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bunimovich, L.A.: On absolutely focusing mirrors. In: Ergodic Theory and Related Topics, III (Güstrow), Lecture Notes in Math., vol. 1514, pp. 62–82. Springer, Berlin (1990)

  6. Bunimovich L.A., Del Magno G.: Track billiards. Commun. Math. Phys. 288(2), 699–713 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bunimovich, L.A., Sinaĭ, Y.G., Chernov, N.I.: Uspekhi Mat. Nauk 46, no. 4(280), 43–92, 192 (1991); translation in Russian Math. Surveys 46(4), 47–106 (1991)

  8. Bussolari L., Lenci M.: Hyperbolic billiards with nearly flat focusing boundaries. I. Phys. D 237(18), 2272–2281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chernov N.I., Haskell C.: Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Theory Dyn. Syst. 16(1), 19–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chernov, N., Markarian, R.: Chaotic Billiards, Mathematical Surveys and Monographs, vol. 127. Amer. Math. Soc., Providence, RI (2006)

  11. Chernov N., Troubetzkoy S.: Ergodicity of billiards in polygons with pockets. Nonlinearity 11(4), 1095–1102 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Del Magno G.: Ergodicity of a class of truncated elliptical billiards. Nonlinearity 14(6), 1761–1786 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Del Magno G., Markarian R.: Bernoulli elliptical stadia. Commun. Math. Phys. 233(2), 211–230 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Del Magno G., Markarian R.: A local ergodic theorem for non-uniformly hyperbolic symplectic maps with singularities. Ergod. Theory Dyn. Syst. 33, 83–107 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Del Magno G., Markarian R.: Singular sets of hyperbolic planar billiards are regular. Regul. Chaotic Dyn. 18(4), 425–452 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Donnay V.J.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141(2), 225–257 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gallavotti G., Ornstein D.S.: Billiards and Bernoulli schemes. Commun. Math. Phys. 38, 83–101 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Galperin G., Krüger T., Troubetzkoy S.: Local instability of orbits in polygonal and polyhedral billiards. Commun. Math. Phys. 169(3), 463–473 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hopf E.: Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91, 261–304 (1939)

    MathSciNet  MATH  Google Scholar 

  20. Katok, A., et al.: Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics, vol. 1222. Springer, Berlin (1986)

  21. Krámli, A., Simányi, N., Szász, D.: A “transversal” fundamental theorem for semi-dispersing billiards. (see also Erratum) Commun. Math. Phys. 129, 535–560 (1990)

  22. Liverani, C., Wojtkowski, M.P.: Ergodicity in Hamiltonian systems. In: Dynamics Reported, pp. 130–202, Dynam. Report. Expositions Dynam. Systems (N.S.), 4. Springer, Berlin

  23. Markarian R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118(1), 87–97 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Markarian R.: New ergodic billiards: exact results. Nonlinearity 6(5), 819–841 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Markarian R.: Non-uniformly hyperbolic billiards. Ann. Fac. Sci. Toulouse Math. (6) 3(2), 223–257 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ornstein D., Weiss B.: On the Bernoulli nature of systems with some hyperbolic structure. Ergod. Theory Dyn. Syst. 18(2), 441–456 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pesin, Ja.B.: Characteristic Ljapunov exponents, and smooth ergodic theory. Uspehi Mat. Nauk 32, no. 4 (196), 55–112, 287 (1977)

  28. Sinaĭ, J.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Usp. Mat. Nauk 25, no. 2 (152), 141–192 (1970)

  29. Sinaĭ, Ya.G., Chernov, N.I.: Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Usp. Mat. Nauk 42, no. 3(255), 153–174, 256 (1987)

  30. Szász D.: On the K-property of some planar hyperbolic billiards. Commun. Math. Phys. 145(3), 595–604 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Wojtkowski M.: Invariant families of cones and Lyapunov exponents. Ergod. Theory Dyn. Syst. 5(1), 145–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wojtkowski M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105(3), 391–414 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wojtkowski M.P.: Two applications of Jacobi fields to the billiard ball problem. J. Differ. Geom. 40(1), 155–164 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Del Magno.

Additional information

Communicated by C. Liverani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Magno, G., Markarian, R. On the Bernoulli Property of Planar Hyperbolic Billiards. Commun. Math. Phys. 350, 917–955 (2017). https://doi.org/10.1007/s00220-017-2828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2828-7

Navigation