Skip to main content
Log in

Discrepancy in divergence of the mitochondrial and nuclear genomes ofDrosophila teissieri andDrosophila yakuba

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Restriction sites were compared in the mitochondrial DNA (mtDNA) molecules from representatives of two closely related species of fruit flies: nine strains ofDrosophila teissieri and eight strains ofDrosophila yakuba. Nucleotide diversities amongD. teissieri strains and amongD. yakuba strains were 0.07% and 0.03%, respectively, and the nucleotide distance between the species was 0.22%. Also determined was the nucleotide sequence of a 2305-nucleotide pari (ntp) segment of the mtDNA molecule ofD. teissieri that contains the noncoding adenine+thymine (A+T)-rich region (1091 ntp) as well as the genes for the mitochondrial small-subunit rRNA, tRNAf-met, tRNAgln, and tRNAile, and portions of the ND2 and tRNAval genes. This sequence differs from the corresponding segment of theD. yakuba mtDNA by base substitutions at 0.1% and 0.8% of the positions in the coding and noncoding regions, respectively. The higher divergence due to base substitutions in the A+T-rich region is accompanied by a greater number of insertions/deletions than in the coding regions. From alignment of theD. teissieri A+T-rich sequence with those ofD. yakuba andDrosophila virilis, it appears that the 40% of this sequence that lies adjacent to the tRNAile gene has been highly conserved. Divergence between the entireD. teissieri andD. yakuba mtDNA molecules, estimated from the sequences, was 0.3%; this value is close to the value (0.22%) obtained from the restriction analysis, but 10 times lower than the value estimated from published DNA hybridization results. From consideration of the relationships of mitochondrial nucleotide distance and allozyme genetic distance found among seven species of theDrosophila melanogaster subgroup, the mitochondrial nucleotide distance observed forD. teissieri andD. yakuba is anomalously low in relation to the nuclear genetic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    PubMed  Google Scholar 

  • Avise JC, Lansman RA (1983) Polymorphism of mitochondrial DNA in populations of higher animals. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 147–164

    Google Scholar 

  • Avise JC, Shapira JF, Daniel SW, Aquadro CF, Lansman RA (1983) Mitochondrial DNA differentiation during the speciation process inPeromyscus. Mol Biol Evol 1:38–56

    PubMed  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Boursot P, Bonhomme F (1986) Génétique et évolution du génome mitochondrial des Métazoaires. Genet Sel Evol 18: 73–98

    Google Scholar 

  • Brown WM (1980) Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci USA 77:3605–3609

    PubMed  Google Scholar 

  • Brutlag DL, Clayton J, Frieland P, Kedes LH (1982) SEQ: a nucleotide sequence analysis and recombination system. Nucleic Acids Res 10:279–304

    PubMed  Google Scholar 

  • Caccone A, Amato GD, Powell JR (1988) Rates and patterns of scnDNA and mtDNA divergence within theDrosophila melanogaster subgroup. Genetics 118:671–683

    PubMed  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    PubMed  Google Scholar 

  • Cariou ML (1987) Biochemical phylogeny of the eight species in theDrosophila melanogaster subgroup, includingD. sechellia andD. orena. Genet Res 50:181–185

    PubMed  Google Scholar 

  • Carson HL (1976) Inference of the time of origin of someDrosophila species. Nature 259:395–396

    PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1987)Drosophila mitochondrial DNA: conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 25:116–125

    PubMed  Google Scholar 

  • Coen E, Strachan T, Dover G (1982) Dynamics of concerted evolution of ribosomal DNA and histone gene families in themelanogaster species subgroup ofDrosophila. J Mol Biol 158: 17–35

    PubMed  Google Scholar 

  • Dale RMK, McClure BA, Houchins JP (1985) A rapid singlestranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18S rDNA. Plasmid 13:31–40

    PubMed  Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of HawaiianDrosophila. J Mol Evol 26:157–164

    PubMed  Google Scholar 

  • Eisses KT, Van Dijk H, Van Delden W (1979) Genetic differentiation within themelanogaster species group of the genusDrosophila (Sophophora). Evolution 33:1063–1068

    Google Scholar 

  • Fauron CMR, Wolstenholme DR (1976) Structural heterogeneity of mitochondrial DNA molecules within the genusDrosophila. Proc Natl Acad Sci USA 73:3623–3627

    PubMed  Google Scholar 

  • Fauron CMR, Wolstenholme DR (1980a) Extensive diversity amongDrosophila species with respect to nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res 8:2439–2452

    PubMed  Google Scholar 

  • Fauron CMR, Wolstenholme DR (1980b) Intraspecific diversity of nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules ofDrosophila mauritiana, Drosophila melanogaster andDrosophila simulans. Nucleic Acids Res 8:5391–5409

    PubMed  Google Scholar 

  • Greenberg BD, Newbold JE, Sugino A (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21:33–49

    PubMed  Google Scholar 

  • Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L, Ashburner M (1988) Historical biogeography of theDrosophila melanogaster species subgroup. Evol Biol 22:159–225

    Google Scholar 

  • Lemeunier F, Ashburner M (1976) Relationships within themelanogaster species subgroup of the genusDrosophila (Sophophora). II. Physlogenetic relationships between six species based upon chromosome banding sequences. Proc R Soc Lond B Biol Sci 193:275–294

    PubMed  Google Scholar 

  • Lemeunier F, David JR, Tsacas L, Ashburner M (1986) Themelanogaster species group. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology ofDrosophila, vol 3E. Academic Press, London, pp 147–256

    Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments. Gene 19:269–276

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    PubMed  Google Scholar 

  • Ohnishi S, Kawanishi M, Watanabe TK (1983) Biochemical phylogenies ofDrosophila: protein differences detected by two-dimensional electrophoresis. Genetica 61:55–63

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminator inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Solignac M, Genermont J, Monnerot M, Mounolou JC (1984) Mitochondrial genetics ofDrosophila: mtDNA segregation in heteroplasmic strains ofD. mauritiana. Mol Gen Genet 197: 183–188

    Google Scholar 

  • Solignac M, Monnerot M, Mounolou JC (1986) Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila. J Mol Evol 23:31–40

    PubMed  Google Scholar 

  • Staden R (1982) Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 10:4731–4751

    PubMed  Google Scholar 

  • Strachan T, Coen E, Webb D, Dover G (1982) Modes and rates of change of complex DNA families ofDrosophila. J Mol Biol 158:37–54

    PubMed  Google Scholar 

  • Tsacas L, Bocquet C (1976) L'espèce chez les Drosophilidae. In: Bocquet C, Génermont J, Lamotte M (eds) Les problèmes de l'espèce dans le règne animal. Mem Soc Zool Fr 38:203–247

  • Tsakas SC, Tsacas L (1984) A phenetic tree of eighteen species of themelanogaster group ofDrosophila using allozyme data as compared with classification based on other criteria. Genetica 64:139–144

    Google Scholar 

  • Wilson AC, Cann R, Carr SM, George M, Gyllensten UB, Helm-Bychovski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400

    Google Scholar 

  • Zakour RA, Bultmann H (1979) Evolution ofDrosophila mitochondrial DNAs. Analysis of heteroduplex molecules. Biochim Biophys Acta 564:342–351

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monnerot, M., Solignac, M. & Wolstenholme, D.R. Discrepancy in divergence of the mitochondrial and nuclear genomes ofDrosophila teissieri andDrosophila yakuba . J Mol Evol 30, 500–508 (1990). https://doi.org/10.1007/BF02101105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101105

Key words

Navigation