Skip to main content
Log in

Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis

  • Research Article
  • Published:
Frontiers in Biology

Abstract

The complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) was determined. The sequenced genome is a circular molecule of 15313 bp, containing 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A + T-rich region. The gene arrangements and transcribing directions are identical to those in most of the reported lepidopteran mitogenomes. The base composition of the whole genome and genes or regions are also similar to those in other lepidopteran species. All the PCGs are initiated by typical ATN codons; the exception being COI, which begins with a CGA codon. Eight genes (ND2, ATPase8, ATPase6, COIII, ND5, ND4L, ND6, and Cytb) end with a TAA stop codon, and two genes (ND1 and ND3) end with TAG. The remaining three genes (COI and COII, which end with TA-, and ND4, which ends with T-) have incomplete stop codons. All tRNAs have the typical clover-leaf structure of mitochondrial tRNAs, with the exception of tRNASer(AGY). On the basis of the concatenated nucleotide and amino acid sequences of the 13 PCGs and wingless gene of 22 butterfly species, maximum parsimony (MP) and Bayesian inference (BI) trees were constructed, respectively. Both MP and BI trees had the same topological structure: ((((Nymphalidae + Danaidae) + Lycaenidae) + Pieridae) + Papilionidae) + Hesperiidae). The results provide support for Hesperiidae as a superfamily-level taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 215(3): 403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Bankier A T, Barrell B G, de Bruijn M H, Coulson A R, Drouin J, Eperon I C, Nierlich D P, Roe B A, Sanger F, Schreier P H, Smith A J, Staden R, Young I G (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806): 457–465

    Article  CAS  PubMed  Google Scholar 

  • Brower A V Z (2000). Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene. Proc Biol Sci, 267(1449): 1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell D L, Brower A V, Pierce N E (2000). Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: papilionoidea). Mol Biol Evol, 17(5): 684–696

    Article  CAS  PubMed  Google Scholar 

  • Cha S Y, Yoon H J, Lee E M, Yoon M H, Hwang J S, Jin B R, Han Y S, Kim I (2007). The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene, 392(1-2): 206–220

    Article  CAS  PubMed  Google Scholar 

  • Harvey D J (1991). Higher classification of the Nymphalidae[A], Appendix B. The Development and Evolution of Butterfly Wing Patterns (HF Nijhout, ed)[M]. Smithsonian Institution Press, Washington DC, 255–273

    Google Scholar 

  • Hong M Y, Lee E M, Jo Y H, Park H C, Kim S R, Hwang J S, Jin B R, Kang P D, Kim K G, Han Y S, Kim I (2008). Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene, 413(1-2): 49–57

    Article  CAS  PubMed  Google Scholar 

  • Hsu R, Briscoe A D, Chang B S, Chang W, Pierce N E (2001). Molecular evolution of a long wavelength-sensitive opsin in mimetic Heliconius butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond, 72(3): 435–449

    Article  Google Scholar 

  • Jiang S T, Hong G Y, Yu M, Li N, Yang Y, Liu Y Q, Wei Z J (2009). Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae). Int J Biol Sci, 5(4): 351–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M J, Wan X L, Kim K G, Hwang J S, Kim I (2010). Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). Afr J Biotechnol, 9(5): 735–754

    Article  CAS  Google Scholar 

  • Kim M J, Wang A R, Park J S, Kim I (2014). Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene, 549(1): 97–112

    Article  CAS  PubMed  Google Scholar 

  • Lavrov D V, Brown W M, Boore J L (2000). A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci U S A, 97(25): 13738–13742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C P, Danforth B N (2004). How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol, 30(3): 686–702

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z (2008). The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Acta Biochim Biophys Sin (Shanghai), 40(8): 693–703

    Article  CAS  Google Scholar 

  • Lowe T M, Eddy S R (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 25(5): 955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutanen M, Wahlberg N, Kaila L (2010). Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc Biol Sci, 277(1695): 2839–2848

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470–474

    Article  CAS  PubMed  Google Scholar 

  • Peña C, Wahlberg N, Weingartner E, Kodandaramaiah U, Nylin S, Freitas A V J, Brower A V Z (2006). Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Mol Phylogenet Evol, 40(1): 29–49

    Article  PubMed  Google Scholar 

  • Regier J C, Cook C, Mitter C, Hussey A (2008). A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Syst Entomol, 33(1): 175–189

    Article  Google Scholar 

  • Silva-Brandão K L, Wahlberg N, Francini R B, Azeredo-Espin A M L, Brown K S Jr, Paluch M, Lees D C, Freitas A V L (2008). Phylogenetic relationships of butterflies of the tribe Acraeini (Lepidoptera, Nymphalidae, Heliconiinae) and the evolution of host plant use. Mol Phylogenet Evol, 46(2): 515–531

    Article  PubMed  Google Scholar 

  • Simon C, Frati F, Bekenbach A (1994). Evolution, weighting, and phylogenetic utility of mitochondrialgene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am, 87(6): 651–701

    Article  CAS  Google Scholar 

  • Singh V K, Mangalam A K, Dwivedi S, Naik S (1998). Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques, 24(2): 318–319

    CAS  PubMed  Google Scholar 

  • Wahlberg N, Braby M F, Brower A V, de Jong R, Lee M M, Nylin S, Pierce N E, Sperling F A, Vila R, Warren A D, Zakharov E (2005). Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc Biol Sci, 272: 1577–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren A D, Ogawa J R, Blower A V Z (2008). Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera:Hesperioidea). Cladistics, 24(5): 642–676

    Article  Google Scholar 

  • Warren A D, Ogawa J R, Brower A V (2009). Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Syst Entomol, 34(3): 467–523

    Article  Google Scholar 

  • Weller S J, Pashley D P (1995). In search of butterfly origins. Mol Phylogenet Evol, 4(3): 235–246

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J Hered, 92(4): 371–373

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Huang Y, Shi F (2007). The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A + T-rich region of 70 bp in length. Genome, 50(9): 855–866

    Article  CAS  PubMed  Google Scholar 

  • Zou F Z, Hao J S, Huang D Y, Zhang D X, Zhu G P, Zhu C D (2009). Molecular phylogeny of 12 families of the Chinese butterflies based on mitochondrial ND1 and 16S rRNA gene sequences (Lepidoptera: Ditrysia: Rhopalocera). Acta Entomologica Sinica, 52: 191–201

    CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Guangxi Key Laboratory of Rare and Endangered Animal Ecology Research Foundation (16-A-01-07), Guangxi Normal University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Min Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, XM., Yang, XW., Hou, LX. et al. Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis. Front. Biol. 12, 71–81 (2017). https://doi.org/10.1007/s11515-016-1434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1434-y

Keywords

Navigation