Skip to main content
Log in

A model system for strong interaction between internal solitary waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A mathematical theory is mounted for a complex system of equations derived by Gear and Grimshaw that models the strong interaction of two-dimensional, long, internal gravity waves propagating on neighboring pycnoclines in a stratified fluid. For the model in question, the Cauchy problem is of interest, and is shown to be globally well-posed in suitably strong function spaces. Our results make use of Kato's theory for abstract evolution equations together with somewhat delicate estimates obtained using techniques from harmonic analysis. In weak function classes, a local existence theory is developed. The system is shown to be susceptible to the dispersive blow-up phenomenon investigated recently by Bona and Saut for Korteweg-de Vries-type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkylas, T. R., Benney, D. J.: Direct resonance in nonlinear wave systems. Stud. Appl. Math.63, 209–226 (1980)

    Google Scholar 

  2. Alkylas, T. R., Benney, D. J.: The evolution of waves near direct-resonance conditions. Stud. Appl. Math.67, 107–123 (1982)

    Google Scholar 

  3. Benjamin, T. B.: Internal waves of finite amplitude and permanent form. J. Fluid Mech.25, 241–270 (1966)

    Google Scholar 

  4. Benjamin, T. B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech.29, 559–592 (1967)

    Google Scholar 

  5. Bona, J. L., Sachs, R.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys.118, 15–29 (1988)

    Article  Google Scholar 

  6. Bona, J. L., Saut, J.-C.: Dispersive blow-up for the generalized Korteweg-de Vries equation. To appear in J. Diff'l Equations (1991a)

  7. Bona, J. L., Saut, J.-C.: The general intermediate long wave equation and related systems. In preparation (1991b)

  8. Bona, J. L., Smith, R.: The initial value problem for the Korteweg-de Vries equation. Phil. Trans. R. Soc. Lond.A278, 555–604 (1975)

    Google Scholar 

  9. Erkart, C.: Internal waves in the ocean. Phys. Fluid4, 791–799 (1961)

    Article  Google Scholar 

  10. Fornberg, R. B., Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. R. Soc. Lond.A289, 373–404 (1978)

    Google Scholar 

  11. Gear, J. A.: Strong interactions between solitary waves belonging to different wave modes. Stud. Appl. Math.72, 95–124 (1985)

    Google Scholar 

  12. Gear, J. A., Grimshaw, R.: Weak and strong interactions between internal solitary waves. Stud. Appl. Math.70, 235–258 (1984)

    Google Scholar 

  13. Ginibre, J., Tsutsumi, Y.: Uniqueness for the generalized Korteweg-de Vries equation. SIAM J. Math. Anal.20, 1388–1425 (1989)

    Article  Google Scholar 

  14. Grimshaw, R.: Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud. Appl. Math.65, 159–188 (1981)

    Google Scholar 

  15. Kato, T.: Quasilinear equations of evolution with applications to partial differential equations, Lect. Notes in Math.448, pp. 27–50. Berlin, Heidelberg, New York:Springer 1975

    Google Scholar 

  16. Kato, T.: On the Korteweg-de Vries equation. Manuscripta Math.28, 89–99 (1979)

    Article  Google Scholar 

  17. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Adv. Math. Supplementary Studies in Applied Math. Vol.8, pp. 93–128 (1983)

    Google Scholar 

  18. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Applied Math.41, 891–907 (1988)

    Google Scholar 

  19. Kenig, C. E., Ponce, G., Vega, L.: On the (generalized) Korteweg-de Vries equation. Duke Math. J.59, 585–610 (1989)

    Article  Google Scholar 

  20. Kenig, C. E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana U. Math. J.40, 33–69 (1991a)

    Article  Google Scholar 

  21. Kenig, C. E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc.4, 323–347 (1991b)

    Google Scholar 

  22. Kenig, C. E., Ruiz, A.: A strong type (2,2) estimate for the maximal function associated to the Schrödinger equation. Trans. Am. Math. Soc.280, 239–246 (1983)

    Google Scholar 

  23. Kubota, T., Ko, D. R. S., Dobbs, L. D.: Weakly-nonlinear, long internal waves in stratified fluids of finite depth. AIAA J. Hydronautics12, 157–165 (1980)

    Google Scholar 

  24. Lions, J.-L.: Quelques methodes de résolution des problèmes aux limites non linéaires. Paris: Dunod 1969

    Google Scholar 

  25. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Vol. 1. Paris: Dunod 1968

    Google Scholar 

  26. Liu, A. K., Kubota, T., Ko, D. R. S.: Resonant transfer of energy between nonlinear waves in neighboring pycnoclines. Stud. Appl. Math.63, 25–45 (1980)

    Google Scholar 

  27. Liu, A. K., Pereira, N. R., Ko, D. R. S.: Weakly interacting internal solitary waves in neighboring pycnoclines. J. Fluid Mech.122, 187–194 (1982)

    Google Scholar 

  28. Saut, J.-C.: Sur quelques généralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl.58, 21–61 (1975)

    Google Scholar 

  29. Saut, J.-C., Temam, R.: Remarks on the Korteweg-de Vries equation. Israel J. Math.24, 78–87 (1976)

    Google Scholar 

  30. Stein, E. M.: Oscillatory integrals in Fourier Analysis. Beijing lectures in Harmonic Analysis, pp. 307–355. Princeton NJ: Princeton University Press 1986

    Google Scholar 

  31. Strichartz, R. S.: Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations. Duke Math. J.44, 705–714 (1977)

    Article  Google Scholar 

  32. Vega, L.: El multiplicador de Schrödinger: La function maximal y los operadores de restriction. Doctoral Thesis Universidad Autonoma, Madrid, Spain 1987

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bona, J.L., Ponce, G., Saut, JC. et al. A model system for strong interaction between internal solitary waves. Commun.Math. Phys. 143, 287–313 (1992). https://doi.org/10.1007/BF02099010

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099010

Keywords

Navigation