Skip to main content
Log in

Efficient hydroxylamine mutagenesis ofHaloferax mediterranei and other extremely halophilic archaebacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The lethal and mutagenic effects of hydroxylamine onHaloferax mediterranei and five other extremely halophilic archaebacteria are described for the first time. Although previous studies have shown thatH. mediterranei was very resistant to the lethal action of other DNA-damaging agents, this strain was found to be relatively sensitive to hydroxylamine, but also more successfully mutated by the latter. The efficiency of the mutagenicity obtained with the hydroxylamine treatment was tested under a variety of conditions, and optimal procedures are described that yielded a number of useful auxotrophic mutant strains ofH. mediterranei. Likewise, a strong induced mutagenicity after hydroxylamine mutagenesis was achieved for the majority of the other archaebacteria tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Antón J, Meseguer I, Rodríguez-Valera F (1988) Production of an extracellular polysaccharide byHaloferax mediterranei. Appl Environ Microbiol 54:2381–2386

    Google Scholar 

  2. Berger I, Geyl D, Boeck A, Stoeffler G, Wittmann HG (1975) Localized mutagenesis of the aroe-strasection of theEscherichia coli chromosome coding for ribosomal proteins. Mol Gen Genet 141:207–211

    Article  PubMed  Google Scholar 

  3. Bonelo G, Ventosa A, Megías M, Ruíz-Berraquero F (1984) The sensitivity of halobacteria to antibiotics. FEMS Microbiol Lett 21:341–345

    Article  Google Scholar 

  4. Bonelo G, Megías M, Ventosa A, Nieto JJ, Ruíz-Berraquero F (1984) Lethality and mutagenicity inHalobacterium mediterranei caused by N-methyl-N′-nitro-N-nitrosoguanidine. Curr Microbiol 11:165–170

    Google Scholar 

  5. Budowsky EI, Sverdlov ED, Shibaeva RP, Monastyrskaya GS, Kochetkov NK (1971) Mechanism of the mutagenic action of hydroxylamine. 3. Reaction of hydroxylamine and O-methylhydroxylamine with the cytosine nucleus. Biochim Biophys Acta 246:300–319

    PubMed  Google Scholar 

  6. Charlebois RL, Hofman JD, Schalkwyk LC, Lam WL, Doolittle WF (1989) Genome mapping in halobacteria. Can J Microbiol 35:21–29

    PubMed  Google Scholar 

  7. Cline SW, Doolittle WF (1987) Efficient transfection of the archaebacteriumHalobacterium halobium. J Bacteriol 169:1341–1344

    PubMed  Google Scholar 

  8. Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF (1989) Transformation methods for halophilic archaebacteria. Can J Microbiol 35:148–152

    PubMed  Google Scholar 

  9. Cline SW, Schalkwyk LC, Doolittle WF (1989) Transformation of the archaebacteriumHalobacterium volcanii with genomic DNA. J Bacteriol 171:4987–4991

    PubMed  Google Scholar 

  10. De Goede P, Molema L (1973) Genetic fine structure of the glycosyltransferase gene of bacteriophage T2. Mutation Res 19:11–22

    PubMed  Google Scholar 

  11. Doolittle WF (1985) Genome structure in archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. London: Academic Press, pp 545–560

    Google Scholar 

  12. Fitt PS, Sharma N (1987) The fate of thymine-containing dimers in ultraviolet-irradiatedHalobacterium cutirubrum. Biochim Biophys Acta 910:103–110

    PubMed  Google Scholar 

  13. Fitt PS, Sharma N, Barua N (1989) Studies of the effects of liquid holding on viability and mutation frequency in N-methyl-N′-nitro-N-nitrosoguanidine-treated halophiles. Curr Microbiol 18:87–91

    Article  Google Scholar 

  14. Gutiérrez MC, García MT, Ventosa A, Nieto JJ, Ruíz-Berraquero F (1986) Occurrence of megaplasmids in halobacteria. J Appl Bacteriol 61:67–71

    Google Scholar 

  15. Heard JT Jr, Matney TS (1980) Requirement of a partially diploid donor for the chemical induction of mutations in transforming DNA. Mutat Res 69:217–224

    PubMed  Google Scholar 

  16. Holden JA, Harriman PD, Wall JD (1976)Escherichia coli mutants deficient in guanine-xanthine phosphoribosyltransferase. J Bacteriol 126:1141–1148

    PubMed  Google Scholar 

  17. Kushner DJ (1985) The Halobacteriaceae. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. London: Academic Press, pp 171–214

    Google Scholar 

  18. Mamalyga VS, Shkvarnikov PK (1977) Relative efficiency of various mutagens in inducing mutations of value in selection in hard spring wheat. Cytol Genet 11:32–35

    Google Scholar 

  19. Marfey P, Robinson E (1981) The genetic toxicology of hydroxylamines. Mutation Res 86:155–191

    PubMed  Google Scholar 

  20. Mevarech M, Werczberger R (1985) Genetic transfer inHalobacterium volcanii. J Bacteriol 162:461–462

    PubMed  Google Scholar 

  21. Moore D (1975) Distribution of alleles of diverse mutagenic origins in the allele map of the FTR cistron. Mutat Res 28:455–458

    Article  Google Scholar 

  22. Oesterhelt D, Krippahl G (1983) Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann Microbiol 134:137–150

    Google Scholar 

  23. Pfeiffer F (1988) Genetics of halobacteria. In: Rodríguez-Valera F (ed) Halophilic bacteria, vol 2. Boca Raton, Florida: CRC Press, pp 105–133

    Google Scholar 

  24. Rosenshine I. Zusman T, Werczberger R, Mevarech M (1987) Amplification of specific DNA sequences correlates with resistance of the archaebacteriumHalobacterium volcanii to the dihydrofolate reductase inhibitors trimethoprim and methotrexate. Mol Gen Genet 298:518–522

    Article  Google Scholar 

  25. Seiler JP (1977) Inhibition of testicular DNA synthesis by chemical mutagens and carcinogens. Preliminary results in the validation of novel short-term test. Mutat Res 46:305–310

    PubMed  Google Scholar 

  26. Singer B, Kusmierek JT (1982) Chemical mutagenesis. Annu Rev Biochem 52:655–693

    Article  Google Scholar 

  27. Stolarski R, Kierdaszuk B, Hagberg CE, Shugar D (1987) Mechanism of hydroxylamine mutagenesis: tautomeric shifts and proton exchange between the promutagen N6-methoxyadenosine and cytidine. Biochem 26:4332–4337

    Article  Google Scholar 

  28. Sweet DM, Moseley BEB (1976) The resistance ofMicrococcus radiodurans to killing and mutation by agents which damage DNA. Mutat Res 34:175–186

    PubMed  Google Scholar 

  29. Torreblanca M, Rodríguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description ofHalocarcula gen. nov. andHaloferax gen. nov. Syst Appl Microbiol 8:89–99

    Google Scholar 

  30. Wieland F (1988) The cell surfaces of halobacteria. In: Rodríquez-Valera F (ed) Halophilic bacteria, vol 2. Boca Raton, Florida: CRC Press, pp 55–65

    Google Scholar 

  31. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Castillo, R., Nieto, J.J., Megías, M. et al. Efficient hydroxylamine mutagenesis ofHaloferax mediterranei and other extremely halophilic archaebacteria. Current Microbiology 21, 83–89 (1990). https://doi.org/10.1007/BF02091824

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02091824

Keywords

Navigation