Skip to main content

Transformation Techniques for the Anaerobic Hyperthermophile Thermococcus kodakarensis

  • Protocol
  • First Online:
Archaea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2522))

Abstract

Genetic manipulation is an essential tool to investigate complex microbiological phenomena. In this chapter we describe the techniques required to transform the model hyperthermophilic, anaerobic archaeon Thermococcus kodakarensis. T. kodakarensis can support two modes of genetic manipulation, dependent either on homologous recombination into the genome or through retention of autonomously replicating plasmids. The robust genetic system developed in T. kodakarensis offers a variety of selectable and counterselectable markers for complex, accurate and iterative genetic manipulations offering greater flexibility to probe gene function in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martínez-Espinosa RM (2020) Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments. Int J Mol Sci 21:4228. https://doi.org/10.3390/ijms21124228

    Article  CAS  PubMed Central  Google Scholar 

  2. Quehenberger J, Shen L, Albers S-V, Siebers B, Spadiut O (2017) Sulfolobus—a potential key organism in future biotechnology. Front Microbiol 8:2474. https://doi.org/10.3389/fmicb.2017.02474

    Article  PubMed  PubMed Central  Google Scholar 

  3. Belilla J, Moreira D, Jardillier L, Reboul G, Benzerara K, López-García JM, Bertolino P, López-Archilla AI, López-García P (2019) Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 3:1552–1561. https://doi.org/10.1038/s41559-019-1005-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mayer F, Müller V (2014) Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 38:449–472. https://doi.org/10.1111/1574-6976.12043

    Article  CAS  PubMed  Google Scholar 

  5. Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5:25. https://doi.org/10.3390/microorganisms5020025

    Article  CAS  PubMed Central  Google Scholar 

  6. Tehei M, Zaccai G (2005) Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochim Biophys Acta 1724:404–410

    Article  CAS  Google Scholar 

  7. Efremov AK, Qu Y, Maruyama H, Lim CJ, Takeyasu K, Yan J (2015) Transcriptional repressor TrmBL2 from Thermococcus kodakarensis forms filamentous nucleoprotein structures and competes with histones for DNA binding in a salt- and DNA supercoiling-dependent manner. J Biol Chem 290:15770–15784. https://doi.org/10.1074/jbc.M114.626705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hegazy GE, Abu-Serie MM, Abo-Elela GM, Ghozlan H, Sabry SA, Soliman NA, Abdel-Fattah YR (2020) In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Sci Rep 10:5986. https://doi.org/10.1038/s41598-020-62663-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813. https://doi.org/10.3389/fmicb.2020.562813

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cabrera MÁ, Blamey JM (2018) Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 51:37. https://doi.org/10.1186/s40659-018-0186-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crosby JR, Laemthong T, Lewis AM, Straub CT, Adams MW, Kelly RM (2019) Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 59:55–64. https://doi.org/10.1016/j.copbio.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  12. Straub CT, Counts JA, Nguyen DMN, Wu C-H, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM (2018) Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 42:543–578. https://doi.org/10.1093/femsre/fuy012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dumorné K, Córdova DC, Astorga-Eló M, Renganathan P (2017) Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol 27:649–659

    Article  Google Scholar 

  14. Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282. https://doi.org/10.1016/j.jbiotec.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  15. Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626. https://doi.org/10.1016/j.copbio.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  16. Hileman TH, Santangelo TJ (2012) Genetics techniques for Thermococcus kodakarensis. Front Microbiol 3:195. https://doi.org/10.3389/fmicb.2012.00195

    Article  PubMed  PubMed Central  Google Scholar 

  17. Atomi H, Reeve J (2019) Microbe profile: Thermococcus kodakarensis: the modehyperthermophilic archaeon. Microbiol (United Kingdom) 165:1166–1168. https://doi.org/10.1099/mic.0.000839

    Article  CAS  Google Scholar 

  18. Gehring A, Sanders T, Santangelo TJ (2017) Markerless gene editing in the Hyperthermophilic archaeon Thermococcus kodakarensis. Bio Protoc 7:e2604. https://doi.org/10.21769/bioprotoc.2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363. https://doi.org/10.1101/gr.3003105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899. https://doi.org/10.1128/AEM.71.7.3889-3899.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    Article  CAS  Google Scholar 

  22. Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189:2683–2691. https://doi.org/10.1128/JB.01692-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santangelo TJ, Čuboňová L, Reeve JN (2010) Thermococcus kodakarensis genetics: Tk1827-encoded β-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76:1044–1052. https://doi.org/10.1128/AEM.02497-09

    Article  CAS  PubMed  Google Scholar 

  24. Farkas JA, Picking JW, Santangelo TJ (2013) Genetic techniques for the archaea. Annu Rev Genet 47:539–561

    Article  CAS  Google Scholar 

  25. Catchpole R, Gorlas A, Oberto J, Forterre P (2018) A series of new E. coli–Thermococcus shuttle vectors compatible with previously existing vectors. Extremophiles 22:591–598. https://doi.org/10.1007/s00792-018-1019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santangelo TJ, Čuboňová L, Reeve JN (2008) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104. https://doi.org/10.1128/AEM.00305-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Santangelo lab for critical reviews and improvements to the manuscript.

Funding

This work was supported with funding (to TJS) from the National Science Foundation, grant EF-2022065, the US Department of Energy, grant DE-SC0014597, the USA National Institutes of Health, GM100329 and from the USA National Aeronautics and Space Administration, Exobiology Program, 80NSSC20K0613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Santangelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liman, G.L.S., Stettler, M.E., Santangelo, T.J. (2022). Transformation Techniques for the Anaerobic Hyperthermophile Thermococcus kodakarensis. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics