Skip to main content

Abstract

Behavioral, cognitive, and emotional phenomena are ultimately encoded by intricate neural networks. During neurotransmission, which involves the movement of several chemicals and ions across the neural membrane, chemical messengers released during brief time intervals into the synaptic gap interact with receptors on the postsynaptic neuron. This can lead to cellular changes, such as an altered membrane potential, gene expression, the release of growth factors, metabolism, and altered responsiveness to further stimuli. It is also well known that numerous neurotransmitters coexist in a given synaptic bouton and that they could be released at different times. In addition, axon terminals of amino acidergic, cholinergic, neuroaminergic, and peptidergic neurons converge in the same brain region. These terminals can become active at different times yet participate in the same function. In vivo experiments have yielded many insights into the regulation of neurotransmission in neuronal circuits and the extracellular microenvironment. However, in vivo measurements are complicated by several factors, such as the wide variety of brain chemicals (~200 neuroactive compounds identified), the rapid fluctuations in neurotransmitter levels by the reuptake process and enzymatic degradation, the structural heterogeneity of the brain, and the occurrence of other cell types that also may release neurotransmitters. This neurochemical complexity demands sensitivity and versatility of the analytical methods used for chemical determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem. 1989;52:1655–8.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste H, Christian P, Huttemeier PC. Microdialysis—theory and application. Prog Neurobiol. 1990;35:195–215.

    Article  CAS  PubMed  Google Scholar 

  • Bert L, Parrot S, Robert F, Desvignes C, Denoroy L, Suaud-Chagny MF, Renaud B. In vivo temporal sequence of rat striatal glutamate, aspartate and dopamine efflux during apomorphine, nomifensine, NMDA and PDC in situ administration. Neuropharmacology. 2002;43:825–35.

    Article  CAS  PubMed  Google Scholar 

  • Bito L, Davson H, Levin E, Murray M, Snider N. The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem. 1966;13:1057–67.

    Article  CAS  PubMed  Google Scholar 

  • Bourne JA, Fosbraey P. Novel method of monitoring electroencephalography at the site of microdialysis during chemically evoked seizures in a freely moving animal. J Neurosci Methods. 2000;99:85–90.

    Article  CAS  PubMed  Google Scholar 

  • Cuadra G, Zurita A, Macedo CE, Molina VA, Brandão ML. Electrical stimulation of the midbrain tectum enhances dopamine release in the frontal cortex. Brain Res Bull. 2000;52:413–8.

    Article  CAS  PubMed  Google Scholar 

  • De Lange EC, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev. 1997;25:27–49.

    Article  PubMed  Google Scholar 

  • De Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD. BBB transport and P-glycoprotein functionality using MDR1A (−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res. 1998;15:1657–65.

    Article  PubMed  Google Scholar 

  • De Lange EC, de Boer AG, Breimer DD. Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Deliv Rev. 2000;45:125–48.

    Article  PubMed  Google Scholar 

  • Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther. 1972;198:9–21.

    CAS  PubMed  Google Scholar 

  • Di Chiara G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res. 2002;137:75–114.

    Article  PubMed  Google Scholar 

  • Gobaille S, Hechler V, Andriamampandry C, Kemmel V, Maitre M. Gamma-hydroxybutyrate modulates synthesis and extracellular concentration of gamma-aminobutyric acid in discrete rat brain regions in vivo. J Pharmacol Exp Ther. 1999;290:303–9.

    CAS  PubMed  Google Scholar 

  • Höcht C, Opezzo JA, Taira CA. Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods. 2007;55:3–15.

    Article  PubMed  Google Scholar 

  • Justice Jr JB. Quantitative microdialysis of neurotransmitters. J Neurosci Methods. 1993;48:263–76.

    Article  CAS  PubMed  Google Scholar 

  • Kehr J. A survey on quantitative microdialysis: theoretical models and practical implications. J Neurosci Methods. 1993;48:251–61.

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Yoshitake T, Wang FH, Wynick D, Holmberg K, Lendahl U, et al. Microdialysis in freely moving mice: determination of acetylcholine, serotonin and noradrenaline release in galanin transgenic mice. J Neurosci Methods. 2001;109:71–80.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RT, Watson CJ, Haskins WE, Powell DH, Strecker RE. In vivo neurochemical monitoring by microdialysis and capillary separations. Curr Opin Chem Biol. 2002;6:659–65.

    Article  CAS  PubMed  Google Scholar 

  • Léna I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81:891–9.

    Article  PubMed  Google Scholar 

  • Macedo CE, Martinez RCR, De Souza Silva MA, Brandäo ML. Increases in extracellular levels of 5-HT and dopamine in the basolateral, but not in the central, nucleus of amygdala induced by aversive stimulation of the inferior colliculus. Eur J Neurosci. 2005;21:1131–8.

    Article  PubMed  Google Scholar 

  • Martinez RCR, Oliveira AR, Macedo CE, Molina VA, Brandão ML. Involvement of dopaminergic mechanisms in the nucleus accumbens core and shell subregions in the expression of fear conditioning. Neurosci Lett. 2008;446:112–6.

    Article  CAS  PubMed  Google Scholar 

  • Nandi P, Lunte SM. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta. 2009;651:1–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obrenovitch TP, Zilkha E, Urenjak J. Intracerebral microdialysis: electrophysiological evidence of a critical pitfall. J Neurochem. 1995;64:1884–7.

    Article  CAS  PubMed  Google Scholar 

  • Pan YF, Feng J, Cheng QY, Li FZ. Intracerebral microdialysis technique and its application on brain pharmacokinetic-pharmacodynamic study. Arch Pharm Res. 2007;30:1635–45.

    Article  CAS  PubMed  Google Scholar 

  • Parrot S, Bert L, Mouly-Badina L, Sauvinet V, Colussi-Mas J, Lambás-Señas L, et al. Microdialysis monitoring of catecholamines and excitatory amino acids in the rat and mouse brain: recent developments based on capillary electrophoresis with laser-induced fluorescence detection—a mini-review. Cell Mol Neurobiol. 2003;23:793–804.

    Article  CAS  PubMed  Google Scholar 

  • Parrot S, Sauvinet V, Riban V, Depaulis A, Renaud B, Denoroy L. High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Methods. 2004;140:29–38.

    Article  CAS  PubMed  Google Scholar 

  • Parsons LH, Justice Jr JB. Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol. 1994;8:189–220.

    CAS  PubMed  Google Scholar 

  • Ronquist G, Hugosson R, Sjölander U, Ungerstedt U. Treatment of malignant glioma by a new therapeutic principle. Acta Neurochir. 1992;114:8–11.

    Article  CAS  PubMed  Google Scholar 

  • Thomas PM, Phillips JP, O’Connor WT. Microdialysis of the lateral and medial temporal lobe during temporal lobe epilepsy surgery. Surg Neurol. 2005;63:70–9.

    Article  PubMed  Google Scholar 

  • Ungerstedt U. Microdialysis—principles and applications for studies in animals and man. J Intern Med. 1991;230:365–73.

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30:44–55.

    CAS  PubMed  Google Scholar 

  • Ungerstedt U, Rostami E. Chapter 7.4 microdialysis in the human brain: clinical applications. Handb Behav Neurosci. 2006;16:675–86.

    Article  Google Scholar 

  • Westerink BHC, Kwint H, DeVries JB. The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci. 1996;16:2605–11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Eugênio Araújo de Moraes Mello M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Macedo, C.E.A., Cuadra, G., Gobaille, S., de Moraes Mello, L.E.A. (2016). Brain Microdialysis. In: Andersen, M., Tufik, S. (eds) Rodent Model as Tools in Ethical Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11578-8_14

Download citation

Publish with us

Policies and ethics