Skip to main content
Log in

Minimal length tree networks on the unit sphere

  • Section VII Computational Geometry And TND
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper considers the problem of finding minimal length tree networks on the unit sphere Φ of a given point set (V) where distance is measured along great circular arcs. The related problems of finding a Steiner Minimal TreeSMT(V) and of finding a Minimum Spanning TreeMST(V) are treated through a simplicial decomposition technique based on computing the Delaunay TriangulationDT(V) and the Voronoi DiagramVD(V) of the given point set.O(N logN) algorithms for computingDT(V),VD(V), andMST(V) as well as anO(N logN) heuristic for finding a sub-optimalSMT(V) solution are presented, together with experimental results for randomly distributed points on Φ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Aly, D.C. Kay and D.W. Litwhiler, Location dominance on spherical surfaces, Oper. Res. 27(1979)972–981.

    Google Scholar 

  2. M. Bern and R. Graham, The shortest-network problem, Sci. Amer. 260(1989)84–89.

    Google Scholar 

  3. J.E. Beasley, A greedy heuristic for the Euclidean and rectilinear Steiner problem, Working Paper, Department of Management Science, Imperial College, London (1989).

    Google Scholar 

  4. S.K. Chang, The generation of minimal trees with a Steiner topology, J. ACM 19(1972)699–711.

    Google Scholar 

  5. D. Cheriton and R.E. Tarjan, Finding minimal spanning trees, SIAM J. Comput. 5(1976)724–742.

    Google Scholar 

  6. F.R.K. Chung and F.K. Hwang, A lower bound for the Steiner tree problem, SIAM J. Appl. Math. 34(1976)27–36.

    Google Scholar 

  7. F.R.K. Chung and R.L. Graham, Steiner trees for ladders, Ann. Discr. Math. 2(1978)173–200.

    Google Scholar 

  8. E.J. Cockayne and Z.A. Melzak, Steiner's problem for set terminals, J. Appl. Math. 26(1968)213–218.

    Google Scholar 

  9. E.J. Cockayne and Z.A. Melzak, Euclidean constructability in graph minimization problems, Math. Mag. 42(1969)206–208.

    Google Scholar 

  10. E.J. Cockayne, On Fermat's problem on the surface of a sphere, Math. Mag. (Sept–Oct, 1972) 216–219.

  11. D.R. Courant and H. Robbins,What is Mathematics? (Oxford University Press, New York, 1941).

    Google Scholar 

  12. D. Dobkin and P. Thurston, The geometry of circles: Voronoi diagrams, Moebius transformations, convex hulls, fortunes algorithm, the cut locus and parameterization of shape, unpublished notes for a course, Department of Computer Science, Princeton University (1987).

  13. J.D.H. Donnay, Spherical trigonometry, in:Encyclopedia of Mathematics (Interscience, New York, 1945).

    Google Scholar 

  14. Z. Drezner and G.O. Wesolowsky, Facility location on a sphere, J. Oper. Res. Soc. 29(1979)997–1004.

    Google Scholar 

  15. D.-Z. Du, F.K. Hwang and J.F. Weng, Steiner minimal trees on zig-zag lines, Trans. Amer. Math. Soc. 278(1982)149–156.

    Google Scholar 

  16. M.R. Garey, R.L. Graham and D.S. Johnson, The complexity of computing Steiner minimal trees, SIAM J. Appl. Math. 32(1977)835–859.

    Google Scholar 

  17. M.R. Garey and D.S. Johnson,Computers and Intractability; A Guide to the Theory of NP-completeness (Freeman, San Francisco, 1979).

    Google Scholar 

  18. R.L. Graham and F.K. Hwang, Remarks on Steiner minimal trees, Bull. Inst. Math. Acad. Sinica 4(1976)177–182.

    Google Scholar 

  19. M.G. Greening, Solution to problem E2233, Amer. Math. Monthly 4(1971)303–304.

    Google Scholar 

  20. E.N. Gilbert and H.O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16(1968)1–29.

    Google Scholar 

  21. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams, ACM Trans. Graphics 4(1985)74–123.

    Google Scholar 

  22. D. Hilbert and S. Cohn-Vossen,Geometry and the Imagination (Chelsea Publ., New York, 1962).

    Google Scholar 

  23. F.W. Hwang and D. Richards, Steiner tree problems (1989), unpublished manuscript.

  24. D.W. Litwhiler, Steiner's problem and Fagnano's result on the sphere, Math. Progr. 18(1980)286–290.

    Google Scholar 

  25. R.F. Love, J.G. Morris and G.O. Wesolowsky,Facilities Location (North-Holland, Amsterdam, 1988).

    Google Scholar 

  26. Z.A. Melzak, On the problem of Steiner, Can. Math. Bull. 4(1961)143–148.

    Google Scholar 

  27. R. Motwhani and P. Raghavan, Geometry on the sphere: Deterministic and probabilistic computations (1987), unpublished manuscript.

  28. F. Preparata and M.I. Shamos,Computational Geometry (Springer, 1985).

  29. R.C. Prim, Shortest connecting networks and some generalizations, BSTJ 36(1957)1389–11401.

    Google Scholar 

  30. M.I. Shamos, Computational geometry, Ph.D. Thesis, Yale University (1978).

  31. J. MacGregor Smith and J.S. Liebman, Steiner trees, Steiner circuits, and the interference problem in building design, Eng. Opt. 4(1979)15–36.

    Google Scholar 

  32. J. MacGregor Smith, D.T. Lee and J.S. Liebman, AnO(N logN) heuristic for Steiner minimal tree problems on the Euclidean metric, Networks 11(1981)23–39.

    Google Scholar 

  33. P.M. Vaidya, Minimum spanning trees ink-dimensional space, SIAM J. Comput. 17(1988)572–582.

    Google Scholar 

  34. G.O. Wesolowsky, Location problems on a sphere, Regional Sci. Urban Econ. 12(1982)495–508.

    Google Scholar 

  35. P. Winter, Steiner problem in networks: A survey, Networks 17(1987)129–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolan, J., Weiss, R. & MacGregor Smith, J. Minimal length tree networks on the unit sphere. Ann Oper Res 33, 501–535 (1991). https://doi.org/10.1007/BF02067239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067239

Keywords

Navigation