Skip to main content
Log in

Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a set of sites in a simple polygon, a geodesic Voronoi diagram of the sites partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n-gon, which improve the best known ones for \(m \le n/{\text {polylog}}n\). Moreover, the algorithms for the geodesic nearest-point and farthest-point Voronoi diagrams are optimal for \(m \le n/{\text {polylog}}n\). This partially answers a question posed by Mitchell in the Handbook of Computational Geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn, H.-K., Barba, L., Bose, P., De Carufel, J.-L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. Discrete Comput. Geom. 56(4), 836–859 (2016)

    Article  MathSciNet  Google Scholar 

  2. Aronov, B.: On the geodesic Voronoĭ diagram of point sites in a simple polygon. Algorithmica 4(1), 109–140 (1989)

    Article  MathSciNet  Google Scholar 

  3. Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoĭ diagram. Discrete Comput. Geom. 9(1), 217–255 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: static-to-dynamic transformations. J. Algorithms 1(4), 297–396 (1980)

    Article  MathSciNet  Google Scholar 

  5. Chazelle, B.: The Discrepancy Method. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  6. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

    Article  MathSciNet  Google Scholar 

  7. Fortune, S.: A sweepline algorithm for Voronoĭ diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  Google Scholar 

  8. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  Google Scholar 

  9. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  Google Scholar 

  10. Hershberger, J.: A new data structure for shortest path queries in a simple polygon. Inform. Process. Lett. 38(5), 231–235 (1991)

    Article  MathSciNet  Google Scholar 

  11. Liu, C.-H., Lee, D.T.: Higher-order geodesic Voronoi diagrams in a polygonal domain with holes. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 1633–1645. SIAM, Philadelphia (2013)

  12. Megiddo, N.: Linear-time algorithms for linear programming in ${{\mathbb{R}}}^3$ and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  Google Scholar 

  13. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  14. Oh, E., Barba, L, Ahn, H.-K.: The farthest-point geodesic voronoi diagram of points on the boundary of a simple polygon. In: Fekete, S., Lubiw, A. (eds.) Proceedings of the 32nd International Symposium on Computational Geometry (SoCG 2016). LIPIcs. Leibniz International Proceedings in Informatics, vol. 51, pp. 56:1–56:15. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016)

  15. Papadopoulou, E., Lee, D.T.: A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains. Algorithmica 20(4), 319–352 (1998)

    Article  MathSciNet  Google Scholar 

  16. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989)

    Article  MathSciNet  Google Scholar 

  17. Zavershynskyi, M., Papadopoulou, E.: A sweepline algorithm for higher order voronoi diagrams. In: Proceedings of the 10th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2013), pp. 16–22. IEEE (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Kap Ahn.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP (Institute for Information & communications Technology Promotion).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, E., Ahn, HK. Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon. Discrete Comput Geom 63, 418–454 (2020). https://doi.org/10.1007/s00454-019-00063-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00063-4

Keywords

Mathematics Subject Classification

Navigation