Skip to main content
Log in

Internal oxidation of 5sp impurities in noble metals

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The internal oxidation of ion-implanted radioactive119In,119Cd, and119Sb in high-purity (5N) copper, silver, and gold single crystals has been investigated. The formation of the impurity-oxygen defect structures was monitored by Mössbauer emission spectroscopy on the 24 keVγ-radiation from the daughter119Sn after theΒ-decay of the implanted radioactive isotopes. Molecule-like complexes are formed consisting of the implanted impurity and several oxygen atoms. The various Mössbauer parameters (isomer shift, quadrupole splitting, and Debye temperature) enable a distinction between different Sn-IV and Sn-II complexes, as well as between substitutional and vacancy-associated Sn atoms, which result from the ion implantations. The evolution of oxygen complexes with temperature during isochronal annealing was studied in the temperature range 300–1000 K. The formation (around 500 K) and the disintegration (around 900 K) of the complexes, in' silver in particular, are explained on the basis of diffusion properties of oxygen. A comparison of results from oxidations due to either thermal diffusion of oxygen or due to recoil implantations from a surface-oxide layer indicates that Sn-IV complexes are invariably formed in the first case, whereas in the latter case, a mixture of Sn-IV and Sn-II complexes is formed. Relations of the present results to similar results from PAC measurements on111Cd in silver and from Mössbauer experiments on AgSn alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Pasquevich, A.G. Bibiloni, C.P. Massolo and F.H. Sanchez, Phys. Lett. 82A(1981)34.

    Google Scholar 

  2. P. Wodniecki and B. Wodniecka, Hyp. Int. 12(1982)95.

    Google Scholar 

  3. A.F. Pasquevich, F.H. Sanchez, A.G. Bibiloni, J. Desimoni and A. López García, Phys. Rev. B27(1983)963.

    Google Scholar 

  4. G.P. Huffman and H.H. Podgurski, Acta Met. 21(1973)449.

    Google Scholar 

  5. H.H. Podgurski and G.P. Huffman, Nature, Phys. Sci. 237(1972)77.

    Google Scholar 

  6. W. Bolse, P. Wodnicki, H. Schröder, M. Uhrmacher and K.P. Lieb, Phys. Lett. 93A(1983)429;

    Google Scholar 

  7. H. Schröder, P. Wodnicki, W. Bolse, M. Uhrmacher and K.P. Lieb, Hyp. Int. 15(1983)449.

    Google Scholar 

  8. F. Pleiter and C. Hohenemser, Phys. Rev. B25(1982)106.

    Google Scholar 

  9. E. Recknagel, G. Schatz and T. Wichert, in:Hyperfine Interactions of Radioactive Nuclei, ed. J. Christiansen, Topics of Current Physics 31 (Springer, Heidelberg, 1983).

    Google Scholar 

  10. H. Andreasen, S. Damgaard, J.W. Petersen and G. Weyer, Phys. Lett. 90A(1982)89.

    Google Scholar 

  11. H. Andreasen, S. Damgaard, J.W. Petersen and G. Weyer, Hyp. Int. 15(1983)375.

    Google Scholar 

  12. H. Andreasen, S. Damgaard, H.L. Nielsen, J.W. Petersen and G. Weyer, Hyp. Int. 15/16(1983)459.

    Google Scholar 

  13. L. Niesen, Nucl. Instr. Meth. 209/210(1983)441.

    Google Scholar 

  14. H.L. Ravn, L.C. Carraz, J. Denimal, E. Kugler, M. Skarestad, S. Sundell and L. Westgaard, Nucl. Instr. Meth. 139(1976)267.

    Google Scholar 

  15. H. Ravn, Phys. Rep. 54(1979)201.

    Google Scholar 

  16. G. Weyer, in:Mössbauer Effect Methodology, Vol. 10, ed. I.J. Gruverman and C.W. Seidel (1976) p. 301.

  17. G. Weyer, Nucl. Instr. Meth. 186(1982)201.

    Google Scholar 

  18. H. Andreasen, S. Damgaard, J.W. Petersen and G. Weyer, to be published.

  19. N.N. Greenwood and T.C. Gibb,Mössbauer Spectroscopy (Chapman and Hall, London, 1971).

    Google Scholar 

  20. J.W. Petersen, S. Damgaard and G. Weyer, J. Phys. F11(1981)487.

    Google Scholar 

  21. W.E. Garner and L.W. Reeves, Trans. Farad. Soc. 50(1954)254.

    Google Scholar 

  22. W. Eichenauer and G. Müller, Z. Metallk. 53(1962)321.

    Google Scholar 

  23. CRC Handbook of Physics and Chemistry (53rd edition).

  24. S.J. Rothman, N.L. Peterson and T.J. Robinson, Phys. Stat. Sol. 39(1970)635.

    Google Scholar 

  25. V.N. Kaigorodov, Ya.A. Rabovskii and V.K. Talinskii, Fiz. Metall. i Metalloved. 24(1967)661.

    Google Scholar 

  26. V.N. Kaigorodov, S.M. Klotzman, A.N. Timofeev and I.Sh. Traktenberg, Fiz. Metall. i Metalloved. 28(1969)120.

    Google Scholar 

  27. T.R. Anthony, in:Vacancies and Intentitials in Metals, ed. A. Seeger et al. (Wiley, New York, 1976).

    Google Scholar 

  28. M.L. Swanson, L.M. Howe and A.F. Quenneville, J. Nucl. Mat. 69/70(1978)372.

    Google Scholar 

  29. J.E. Verfurth and R.A. Rapp, Trans. AIME 230(1964)1310.

    Google Scholar 

  30. C. Wagner, Z. Electrochem. 63(1959)772.

    Google Scholar 

  31. L. Niesen and H. de Waard, Hyp. Int. 15/16(1983)455.

    Google Scholar 

  32. M. Salomon, Nucl. Phys. 54(1964)171.

    Google Scholar 

  33. V.A. Bryukhanov, N.N. Delyagin and V.S. Shpinel, Sov. Phys. JETP 20(1965)55.

    Google Scholar 

  34. H. Andreasen, S. Damgaard, J.W. Petersen and G. Weyer, J. Phys. F13(1983)2077.

    Google Scholar 

  35. H. de Waard, Proc. Int. Conf. on Mössbauer Spectroscopy, Jaipur, 1981 (Indian National Science Academy, New Delhi, 1982) p. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreasen, H., Damgaard, S., Nielsen, H.L. et al. Internal oxidation of 5sp impurities in noble metals. Hyperfine Interact 23, 43–63 (1985). https://doi.org/10.1007/BF02060137

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060137

Keywords

Navigation