Skip to main content
Log in

Physico-chemical forms of radiostrontium in simulated freshwaters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method for the analysis of the physico-chemical forms of radiostrontium in waters is described and applied to the simulated lake and groundwaters to which were later added clay minerals and humus substances. The simulated water samples were fractionated using filtration and ultrafiltration: particulates, colloids and dissolved species. The dissolved species were further separated into three fractions using ion exchange: cations, anions and non-ionic species. The physico-chemical forms of radiostrontium do not appreciable change when humus substances or clay mineral or both are added to the water samples. Only about 1–6% of added radiostrontium was found in particulate and colloid fractions. The greatest amount of85Sr was always found in the dissolved fraction, cations (>87%). Radiostrontium was never found in the dissolved fraction, anions or non-ionic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nilsson, B. S. Jensen, L. Carlsen, European Appl. Res. Rept.-Nucl. Sci. Technol., 1 (1985) 149.

    Google Scholar 

  2. B. Salbu, H. E. Bjørnstad, E. Lydersen, A. C. Pappas, J. Radioanal. Nucl. Chem., 115 (1987) 113.

    Google Scholar 

  3. B. Salbu, H. E. Bjørnstad, J. E. Brittain, J. Radioanal. Nucl. Chem., 156 (1992) 7.

    Google Scholar 

  4. N. A. Marley, J. S. Jeffrey, K. A. Orlandini, M. M. Cunningham, Environ. Sci. Technol., 27 (1993) 2456.

    Google Scholar 

  5. Y. Tanizaki, T. Shimokawa, M. Yamazaki, Water Res., 26 (1992) 55.

    Google Scholar 

  6. Y. Tanizaki, T. Shimokawa, M. Nakamura, Environ. Sci. Technol., 26 (1992) 1433.

    Google Scholar 

  7. K. H. Lieser, A. Ament, R. Hill, R. N. Singh, U. Stingl, B. Thybusch, Radiochim. Acta, 49 (1990) 83.

    Google Scholar 

  8. P. Benes, R. Polliak, J. Radioanal. Nucl. Chem., 141 (1990) 75.

    Google Scholar 

  9. D. Jinzhou, D. Wenming, W. Xiangke, T. Zuyi, J. Radioanal. Nucl. Chem., 1 (1996) 31.

    Google Scholar 

  10. T. E. Cerling, R. R. Turner, Geochim. Cosmochim. Acta, 46 (1982) 1333.

    Google Scholar 

  11. R. E. Jackson, K. J. Inch, Environ. Sci. Technol., 17 (1983) 231.

    Google Scholar 

  12. V. Koss, J. I. Kim, J. Contam. Hydrol., 6 (1990) 267.

    Google Scholar 

  13. D. M. Chittenden, II. Environ. Sci. Technol., 17 (1983) 26.

    Google Scholar 

  14. H. Yasuda, S. Uchida, Environ. Sci. Technol., 27 (1993) 2462.

    Google Scholar 

  15. A. Lerman, J. Geophys. Res., 77 (1972) 3256–3264.

    Google Scholar 

  16. H. R. Gunten Von, P. Beneš, Radiochim. Acta, 69 (1995) 1.

    Google Scholar 

  17. P. A. Aarnio, M. T. Nikkinen, J. T. Routti, Automation with Macros, Methods and Applications of Radioanalytical Chemistry, Vol. 2, April 21–27, 1991, Kona, Hawaii.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kekki, T., Rosenberg, R.J. & Jaakkola, T. Physico-chemical forms of radiostrontium in simulated freshwaters. J Radioanal Nucl Chem 224, 77–81 (1997). https://doi.org/10.1007/BF02034615

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02034615

Keywords

Navigation