Skip to main content
Log in

Fractionation of chemical species in surface water from El Granero reservoir, Chihuahua, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Chemical species are highly dependent on the physical and chemical parameters of aquatic ecosystems. The aim of this work was to determine and characterise the fractionation of several chemical species (in colloidal and dissolved phase) in water from El Granero dam. Total dissolved solids, hardness, and chemical oxygen demand were recorded in situ. Soluble ions (Ca+, Mg+, Na+, K+, Cl, F, and SO42−) and alkalinity were determined by atomic absorption spectrophotometry and the Mexican standard, respectively. Ultrafiltration was used to separate the fractions (colloidal and dissolved) from the water samples. Elemental, radiological, mineralogical, and morphological characteristics were assessed using inductively coupled plasma-optical emission spectrometry, alpha spectrometry, X-ray diffraction, and scanning electron microscopy with energy dispersive X-ray analysis, respectively. The results showed that easily fractionated trace elements are more concentrated in colloids. Ca and Mg composed colloids, with low contents of Fe. The most abundant trace element in colloids were Sr, Li, Zn, Pb, As, Cu, Mo, V, Ti, and Cr. Conversely, Cu and V were in dissolved fraction. Colloids had high contents of 238U. Considering mineralogy, colloids are composed by calcite (CaCO3), halite (NaCl), and sodium carbonate/sulphate (Na6CO3(SO4)2). The colloidal material showed the formation of agglomerates due to their charge. The colloids were mainly formed by calcium and magnesium, which is consistent with the geological and arid conditions of the zone. From colloids composition, it was possible to obtain the fractionation of selective particle-reactive elements in surface water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelgawad AM, Watanabe K, Takeuchi S, Mizuno T (2009) The origin of fluoride-rich groundwater in Mizunami area, Japan—mineralogy and geochemistry implications. Eng Geol 108(1–2):76–85

    Google Scholar 

  • Abril JM, García-Tenorio R, Manjón G (2009) Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate. J Hazard Mater 164(2–3):790–797

    Google Scholar 

  • Aosai D, Saeki D, Iwatsuki T, Matsuyama H (2015) Concentration and characterization of organic colloids in deep granitic groundwater using nanofiltration membranes for evaluating radionuclide transport. Colloids Surf A 485:55–62

    Google Scholar 

  • Baken S, Moens C, van der Grift B, Smolders E (2016) Phosphate binding by natural iron-rich colloids in streams. Water Res 98:326–333

    Google Scholar 

  • Berger T, Mathurin FA, Drake H, Åström ME (2016) Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks. Sci Total Environ 569–570:948–960

    Google Scholar 

  • Bolivar JP, Garcia-Tenorio R, Vaca F (2000) Radioecological study of an estuarine system located in the south of Spain. Water Res 34(11):2941–2950

    Google Scholar 

  • Bucca M, Dietzel M, Tang J, Leis A, Köhler SJ (2009) Nucleation and crystallization of otavite, witherite, calcite, strontianite, hydrozincite, and hydrocerussite by CO2 membrane diffusion technique. Chem Geol 266(3):143–156

    Google Scholar 

  • Burillo Montufar J, Reyes Cortes M, Reyes Cortes I, Espino Valdez M, Hinojosa de la Garza O, Nevarez Ronquillo D, Herrera Peraza E, Renteria Villalobos M, Montero Cabrera M (2012) Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico. Appl Geochem 27(6):1111–1122

    Google Scholar 

  • Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50(3):251–264

    Google Scholar 

  • Carvalho FP, Oliveira JM, Lopes I, Batista A (2007) Radionuclides from past uranium mining in rivers of Portugal. J Environ Radioact 98(3):298–314

    Google Scholar 

  • Carvalho FP, Oliveira JM, Malta M (2014) Radioactivity in Iberian Rivers with uranium mining activities in their catchment areas. Procedia Earth Planet Sci 8:48–52

    Google Scholar 

  • Chabaux F, Riotte J, Dequincey O (2003) U-Th-Ra fractionation during weathering and river transport. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium series geochemistry: reviews in mineralogy and geochemistry, vol 52. Mineralogical Society of America, Chantilly, pp 1–19

    Google Scholar 

  • Chen B, Ma X, Wang Z (2014) Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. J Asian Earth Sci 93:301–314

    Google Scholar 

  • CONAPESCA: Comisión Nacional de Acuacultura y Pesca (2004) Informe final del proyecto diagnostico socioeconómico de la Presa Luis. L. León “El Granero”, Chihuahua, México. México, Facultad de Ciencias del Mar. Universidad Autónoma de Sinaloa, Mazatlán, pp 1–82

    Google Scholar 

  • Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185

    Google Scholar 

  • Dawodu MO, Ipeaiyeda AR (2008) Evaluation of groundwater and stream quality characteristics in the vicinity of a battery factory in Ibadan, Nigeria. Afr J Biotechnol 7(12):1933–1938

    Google Scholar 

  • Degueldre C (2006) Identification and Speciation of Actinides in the Environment. In: Katz JJ, Seaborg GT (eds) The chemistry of the actinide and transactinide elements. American Chemical Society, Washington, DC, pp 3013–3085

    Google Scholar 

  • Degueldre C, Kline A (2007) Study of thorium association and surface precipitation on colloids. Earth Planet Sci Lett 264(1):104–113

    Google Scholar 

  • Dosseto A, Bourdon B, Gaillardet J, Maurice-Bourgoin L, Allègre CJ (2006) Weathering and transport of sediments in the Bolivian Andes: time constraints from uranium-series isotopes. Earth Planet Sci Lett 248:759–771

    Google Scholar 

  • Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66(20):3533–3547

    Google Scholar 

  • Environmental Protection Agency (2001) Parameters of water quality, Interpretation and Standards. EPA, Wexford

    Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2014) Trace elements in river waters. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 195–235

    Google Scholar 

  • Garrido Schneider EA, García-Gil A, Vázquez-Suñè E, Sánchez-Navarro JÁ (2016) Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock. Sci Total Environ 544:354–368

    Google Scholar 

  • Gomez-Gonzalez MA, Voegelin A, Garcia-Guinea J, Bolea E, Laborda F, Garrido F (2016) Colloidal mobilization of arsenic from mining-affected soils by surface runoff. Chemosphere 144:1123–1131

    Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford, pp 645–746

    Google Scholar 

  • Grochowska J, Tandyrak R (2009) The influence of the use of land on the content of calcium, magnesium, iron and manganese in water, exemplified in three lakes in the Olsztyn vicinity. Limnol Rev 9(1):9–16

    Google Scholar 

  • Hallstadius L (1984) A method for the electrodeposition of actinides. Nucl Instrum Methods Phys Res 223(2–3):266–267

    Google Scholar 

  • Holguín C, Rubio H, Olave ME, Saucedo R, Gutiérrez M, Bautista R (2006) Calidad del agua del Río Conchos en la región de Ojinaga, Chihuahua: parámetros fisicoquímicos, metales y metaloides. [en linea], vol 22. Universidad y Ciencia, Panama

    Google Scholar 

  • Hu C-Y, Lo S-L, Kuan W-H (2014) High concentration of arsenate removal by electrocoagulation with calcium. Sep Purif Technol 126:7–14

    Google Scholar 

  • Instituto Nacional de Estadística y Geografía (2005) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Aldama, Chihuahua. Clave geoestadística 08002. Marco Geoestadístico municipal. INEGI, México

    Google Scholar 

  • Katsoyiannis IA, Hug SJ, Ammann A, Zikoudi A, Hatziliontos C (2007) Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Sci Total Environ 383(1–3):128–140

    Google Scholar 

  • Kevern RN (1989) Alkalinity water, classification systems, vol part 1. The Michigan

  • Lahermo P, Sandström H, Malisa E (1991) The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications. J Geochem Explor 41(1):65–79

    Google Scholar 

  • Luna-Porres MY, Rodríguez-Villa MA, Herrera-Peraza EF, Renteria-Villalobos M, Montero-Cabrera ME (2014) Potential human health risk by metal(loid)s, 234,238U and 210Po due to consumption of fish from the “Luis L. Leon” reservoir (Northern México). Int J Environ Res Public Health 11:6612–6638

    Google Scholar 

  • Ma R, Liu C, Greskowiak J, Prommer H, Zachara J, Zheng C (2014) Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone. J Contam Hydrol 156:27–37

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Google Scholar 

  • Martinez-Aguirre A, Moron MC, Garcia-Leon M (1991) Measurements of U- and Ra-isotopes in rainwater samples. J Radioanal Nucl Chem 152(1):37–46

    Google Scholar 

  • Méndez-García CG, Luna-Porres MY, Montero-Cabrera ME, Renteria-Villalobos M, Pérez-Cázares B, García-Tenorio R (2016) Arsenic, lead, and uranium concentrations on sediments deposited in reservoirs in the Rio Grande Basin, USA–Mexico border. J Soils Sediments 16(7):1970–1985

    Google Scholar 

  • Merschel G, Bau M, Dantas EL (2017) Contrasting impact of organic and inorganic nanoparticles and colloids on the behavior of particle-reactive elements in tropical estuaries: an experimental study. Geochim Cosmochim Acta 197:1–13

    Google Scholar 

  • Mexicano Servicio Geológico (2015) Panorama Minero del Estado de Chihuahua. Servicio Geológico Mexicano, Mexico, pp 20–23

    Google Scholar 

  • Morford JL, Emerson S (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta 63(11):1735–1750

    Google Scholar 

  • Oyarzun R, Lillo J, Higueras P, Oyarzún J, Maturana H (2004) Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio-Tambo district) vs. geologic processes. J Geochem Explor 84(2):53–64

    Google Scholar 

  • Pokrovsky OS, Schott J (2002) Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ Sci Technol 36(3):426–432

    Google Scholar 

  • Raposo JC, Sanz J, Zuloaga O, Olazabal MAA, Madariaga JM (2004) Validation of the thermodynamic model of inorganic arsenic in non polluted river waters of the Basque country (Spain). Talanta 63(3):683–690

    Google Scholar 

  • Renterıa-Villalobos M, Reyes-Cortes M, Mantero J, Manjon G, Garcıa-Tenorio R, Herrera E, Montero-Cabrera ME (2012) Uranium in the surrounding of SanMarcos-Sacramento river environment (Chihuahua, Mexico). Sci World J 2012:1–13

    Google Scholar 

  • Reyes E, Marques LS (2008) Uranium series disequilibria in ground waters from a fractured bedrock aquifer (Morungaba Granitoids-Southern Brazil): implications to the hydrochemical behavior of dissolved U and Ra. Appl Radiat Isot 66(10):1531–1542

    Google Scholar 

  • Riotte J, Chabaux F (1999) (234U/238U) activity ratios in freshwaters as tracers of hydrological processes: the strengbach watershed (Vosges, France). Geochim Cosmochim Acta 63(9):1263–1275

    Google Scholar 

  • Saito T, Suzuki Y, Mizuno T (2013) Size and elemental analyses of nano colloids in deep granitic groundwater: implications for transport of trace elements. Colloids Surf A 435:48–55

    Google Scholar 

  • SAS (2000) Statistical analysis system users’ guide. Statistical Analysis System Institute Inc., Cary

    Google Scholar 

  • Secretaria de Economía (2001a) Water analysis - determination of total chlorine in natural water, wastewaters and wastewaters treated - test method. NMX-AA-073-SCFI-2001. DOF, Diario Oficial de la Federación, México, pp 1–13

    Google Scholar 

  • Secretaria de Economía (2001b) Water analysis - determination of metals by atomic absorption in natural, drinking, wastewaters and wastewaters treated - test method. NMX-AA-051-SCFI-2001. DOF, Diario Oficial de la Federación, México, pp 1–47

    Google Scholar 

  • Secretaría de Economía (2001c) Water analysis - determination of total hardness in natural, wastewaters and wastewaters treated - test method. NMX-AA-072-SCFI-2001. DOF, Diario Oficial de la Federación, Mexico, pp 1–14

    Google Scholar 

  • Secretaria de Economia (2001d) Water analysis - determination of acidity and alkalinity total in natural, wastewaters and wastewaters treated. NMX-AA-036-SCFI-2001. DOF, Diario Oficial de la Federación, Mexico, pp 1–22

    Google Scholar 

  • Servicio Geológico Mexicano (2000) Carta geológico-minera. Chorreras H13-C59. Secretaría de Economía, Chihuahua

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Google Scholar 

  • Speer JA, Hensley-Dunn ML (1976) Strontianite composition and physical propertie. Am Miner 61:l00l–1004

    Google Scholar 

  • Sracek O, Wanke H, Ndakunda NN, Mihaljevič M, Buzek F (2006) Geochemistry and fluoride levels of geothermal springs in Namibia. J Geochem Explor 148:96–104

    Google Scholar 

  • Talvitie NA (1972) Electrodeposition of actinides for alpha spectrometric determination. Anal Chem 44(2):280–283

    Google Scholar 

  • Tarbuck EJ, Lutgens FK (2005) Earth: an introduction to physical geology. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • U.S. Department of the Interior|U.S. Geological Survey (2016) USGS water-quality information, water hardness and alkalinity. USGS, Washington, DC

    Google Scholar 

  • Wang Z, Ma J, Li J, Wei G, Chen X, Deng W, Xie L, Lu W, Zou L (2015) Chemical weathering controls on variations in the molybdenum isotopic composition of river water: evidence from large rivers in China. Chem Geol 410:201–212

    Google Scholar 

  • World Health Organization (WHO) (2008) Guidelines for drinking-water quality. WHO, Geneva, pp 1–492

    Google Scholar 

  • Xiao Q, Jiang Y, Shen L, Yuan D (2018) Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: a chemical and isotopic reconnaissance. Appl Geochem 89:49–58

    Google Scholar 

  • Zeppenfeld K (2006) Crystallization kinetics of strontianite from Sr(HCO3)2 solutions. Chem Erde 66(4):319–323

    Google Scholar 

Download references

Acknowledgements

Research financially supported by the CONACyT (Proyect CB-2011-01-16697). We are also grateful with the CIMAV (Centro de Investigación en Materiales Avanzados) and the University of Seville.

Author information

Authors and Affiliations

Authors

Contributions

ZKO-C participated in the sample collection and processing, spectra analysis, result interpretation, and statistical data processing. MEM-C interpreted the results, processed the statistical data, and discussed the results. GM-C contributed to the spectra analysis, as well as interpretation and the discussion of the results. ALR-M supported in the discussion of the results and proofreading the English document. ES-E processed the statistical data and discussed the results. MR-V participated in the whole process; sampling collection, sample processing, spectra analysis, results interpretation, discussion, and writing. She is the corresponding author.

Corresponding author

Correspondence to M. Rentería-Villalobos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortíz-Caballero, Z.K., Rentería-Villalobos, M., Montero-Cabrera, M.E. et al. Fractionation of chemical species in surface water from El Granero reservoir, Chihuahua, Mexico. Environ Earth Sci 78, 718 (2019). https://doi.org/10.1007/s12665-019-8756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8756-4

Keywords

Navigation