Skip to main content
Log in

Vasopressin-like effects of psychotropic drugs in amphibian epithelia

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Amphibian epithelia have been used as models for studying the effects of psychotropic drugs on membrane transport. Several of these agents added to the internal or to the external media, at concentrations greater than 10−3 m, had inhibitory, “ouabainlike” effects on Na transport. In contrast, stimulatory, “vasopressin-like” effects were seen at lower concentrations. The stimulation was additive to that of oxytocin if the drug was present in the external solution but nonadditive if in the internal solution. On water transport, harmala alkaloids had a vasopressinomimetic action in toad skin, while inhibition was seen with Li and amitriptyline. To account for these multiple effects, it is hypothesized that psychotropic drugs act on the following cell targets: the Na pump, the cyclic nucleotide system, microtubules, and membrane calcium sites at the outer barrier of the epithelium. Direct, biochemical evidence is needed to substantiate this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge, M.J., Prince, W.T. 1974. The nature of the binding between LSD and a 5-HT receptor: A possible explanation for hallucinogenic activity.Br. J. Pharmacol. 51:269

    Google Scholar 

  2. Bhattacharyya, B., Wolff, J. 1976. Stabilization of microtubules by lithium ion.Biochem. Biophys. Res. Commun. 73:383

    Google Scholar 

  3. Butcher, R.W., Sutherland, E.W. 1962. Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine.J. Biol. Chem. 237:1244

    Google Scholar 

  4. Canessa, M., Jaimovich, E., Fuente, M. de la. 1973. Harmaline: A competitive inhibitor of Na ion in the (Na++K+)-ATPase system.J. Membrane Biol. 13:263

    Google Scholar 

  5. Charnock, J.S., Bashford, C.L., Ellory, J.C. 1976. Effects of ATP and magnesium ions on the fluorescence of harmala alkaloids. Restrictions for the use of harmala alkaloids as fluorescent probes for (Na++K+)-ATPase.Biochim. Biophys. Acta 436:413

    Google Scholar 

  6. Cox, M., Singer, I. 1975. Lithium and water metabolism.Am. J. Med. 59:153

    Google Scholar 

  7. Crabbé, J., Khatcheressian, I. 1976. Disappearance of insulin response after enzymatic treatment of sodium-transporting amphibian epithelia.Pfluegers Arch. 364:99

    Google Scholar 

  8. Dean, R.B. 1941. Theories of electrolyte equilibrium in muscle.Biol. Symp. 3:331

    Google Scholar 

  9. De Sousa, R.C. 1975. Mécanismes de transport de l'eau et du sodium par les cellules des épithélia d'amphibiens et du tubule rénal isolé.J. Physiol. (Paris) 71:5A

    Google Scholar 

  10. De Sousa, R.C. 1976. Effects of hallucinogenic drug—harmaline—on sodium and water transport.Fed. Proc. 35:703

    Google Scholar 

  11. De Sousa, R.C. 1976. Effects of amitriptyline and harmaline on sodium and water transport.Experientia 32:762

    Google Scholar 

  12. De Sousa, R.C., Grosso, A. 1973. Effects of diphenylhydantoin on transport processes in frog skin (Rana ridibunda).Experientia 29:1097

    Google Scholar 

  13. DeSousa, R.C., Grosso, A. 1978. Vasopressin-like effects of a hallucinogenic drug—harmaline—on sodium and water transport.J. Membrane Biol. 40:77

    Google Scholar 

  14. De Sousa, R.C., Grosso, A., Rufener, C. 1974. Blockade of the hydrosmotic effect of vasopressin by cytochalasin B.Experientia 30:175

    Google Scholar 

  15. Ehrenfeld, J., Garcia-Romeu, F. 1977. Effect of harmaline on sodium transport inRana esculenta skin.Br. J. Pharmacol. 59:115

    Google Scholar 

  16. Forrest, J.N., Jr., Cohen, A.D., Torretti, J., Himmelhoch, J.M., Epstein, F.H. 1974. On the mechanism of lithium-induced diabetes insipidus in man and the rat.J. Clin. Invest. 53:1115

    Google Scholar 

  17. Graziani, Y., Chayoth, R. 1977. Elevation of cyclic AMP level in Ehrlich ascites tumor cells by quercetin.Biochem. Pharmacol. 26:1259

    Google Scholar 

  18. Grin, J., Bueno, E.J. 1973. Effect of cocaine on Na channel in toad skin.Can. J. Physiol. Pharmacol. 51:516

    Google Scholar 

  19. Grosso, A., De Sousa, R.C. 1977. Vasopressin-like effects of harmaline on water transport: interaction with lithium and potassium. XXVIIth International Congress of Physiological Sciences, Paris, 1977. (Abstr.) p. 288

  20. Grundy, H.F. 1966. The effects of morphine, pethidine and nalorphine on the isolated frog skin preparation.J. Pharm. Pharmacol. 18:694

    Google Scholar 

  21. Harris, R.A., Iwamoto, E.T., Loh, H.H., Way, E.L. 1975. Analgetic effects of lanthanum: cross-tolerance with morphine.Brain Res. 100:221

    Google Scholar 

  22. Harrisson, C.M.H., Page, B.M., Keir, H.M. 1976. Mescaline as a mitotic spindle inhibitor.Nature (London) 260:138

    Google Scholar 

  23. Herrera, F.C., Curran, P.F. 1963. The effect of Ca and antidiuretic hormone on Na transport across frog skin. I. Examination of interrelationships between Ca and hormone.J. Gen. Physiol. 46:999

    Google Scholar 

  24. Hinman, N.D., Cann, J.R. 1976. Reversible binding of chlorpromazine to brain tubulin.Mol. Pharmacol. 12:769

    Google Scholar 

  25. Huang, M., Daly, J.W. 1972. Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 1. Structure-activity relationships of agonists and antagonists of biogenic amines and of tricyclic tranquilizers and antidepressants.J. Med Chem. 15:458

    Google Scholar 

  26. Kwant, W.O., Seeman, P. 1969. The displacement of membrane calcium by a local anesthetic (chlorpromazine).Biochim. Biophys. Acta 193:338

    Google Scholar 

  27. Lampert, A., Nirenberg, M., Klee, W.A. 1976. Tolerance and dependence evoked by an endogenous opiate peptide.Proc. Nat. Acad. Sci. USA 73:3165

    Google Scholar 

  28. Lelievre, L., Paraf, A., Charlemagne, D., Sheppard, J.R. 1977. Plasma membrane studies on drug sensitive and resistant cell lines. Exp. Cell Res.104:191

    Google Scholar 

  29. Levine, S.D., Franki, N., Einhorn, R., Hays, R.M. 1976. Vasopressin-stimulated movement of drugs and uric acid across the toad uninary bladder.Kidney Int. 9:30

    Google Scholar 

  30. Mamelak, M., Weissbluth, M., Maffly, R.H. 1970. Effect of chlorpromazine on permeability of the toad bladder.Biochem. Pharmacol. 19:2303

    Google Scholar 

  31. Marguerat, J.D. 1975. Lanthanides et épithéliums d'amphibiens: Etude des effets sur les transports d'eau et de sodium et de l'interaction avec le couplage stimulus-effet hormonal. Thèse. Université de Genève

  32. Marumo, F., Mishina, T., Asano, Y., Tashima, Y. 1976. The inhibitory effect of reserpine on the active sodium transport across the frog bladder.Pfluegers Arch. 365:15

    Google Scholar 

  33. McClane, T.K. 1965. A biphasic action of ouabain on sodium transport in the toad bladder.J. Pharmacol. Exp. Ther. 148:106

    Google Scholar 

  34. Medzihradsky, F., Nandhasri, P.S. 1972. Effects of some analgesics and antidepressants on the (Na++K+)-adenosine triphosphatase from cortices of brain and kidney.Biochem. Pharmacol. 21:2103

    Google Scholar 

  35. Mikkelsen, R.B. 1976. Lanthanides as calcium probes in biomembranes.In: Biological Membranes. Vol. 3, p. 153. D. Chapman and D.F.H. Wallach, editors. Academic Press, New York

    Google Scholar 

  36. Mózsik, G. 1969. Some feed-back mechanisms by drugs in the interrelationship between the active transport system and adenyl cyclase system localized in the cell membrane.Eur. J. Pharmacol. 7:319

    Google Scholar 

  37. Nathanson, J.A. 1977. Cyclic nucleotides and nervous system function.Physiol. Rev. 57:157

    Google Scholar 

  38. Nathanson, J.A., Greengard, P. 1974. Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: A possible site of action of lysergic acid diethylamide.Proc. Nat. Acad. Sci. USA 71:797

    Google Scholar 

  39. Palatini, P. 1977. Mechanism of inhibition of sodium- and potassium-dependent adenosine triphosphatase by tricyclic antipsychotics.Mol. Pharmacol. 13:216

    Google Scholar 

  40. Pietras, R.J., Naujokaitis, P.J., Szego, C.M. 1976. Differential effects of vasopressin on the water, calcium and lysosomal enzyme contents of mitochondria-rich and lsysosome-rich (granular) epithelial cells isolated from bullfrog urinary bladder.Mol. Cell. Endocrinol. 4:89

    Google Scholar 

  41. Poffenbarger, M., Fuller, G.M. 1977. Effects of psychotropic drugs on neurotubule assembly.J. Neurochem. 28:1167

    Google Scholar 

  42. Robinson, J.D. 1975. Harmaline inhibits the (Na++K+)-dependent ATPase by affecting both Na+ and K+ activation.Biochem. Pharmacol. 24:2005

    Google Scholar 

  43. Roufogalis, B.D. 1975. Comparative studies on the membrane actions of depressant drugs: The role of lipophilicity in inhibition of brain sodium and potassium-stimulated ATPase.J. Neurochem. 24:51

    Google Scholar 

  44. Rüphi, M., Sousa, R.C. de, Favrod-Coune, E., Posternak, J.M. 1972. Optical method for measuring water flow with automatic recording.Experientia 28:1391

    Google Scholar 

  45. Schwartz, A., Lindenmayer, G.E., Allen, J.C. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects.Pharmacol. Rev. 27:3

    Google Scholar 

  46. Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583

    Google Scholar 

  47. Sharma, S.K., Klee, W.A., Nirenberg, M. 1975. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance.Proc. Natl. Acad. Sci. USA 72:3092

    Google Scholar 

  48. Sharma, S.K., Klee, W.A., Nirenberg, M. 1977. Opiate-dependent modulation of adenylate cyclase.Proc. Nat. Acad. Sci. USA 74:3365

    Google Scholar 

  49. Skou, J.C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochim. Biophys. Acta. 23:394

    Google Scholar 

  50. Sutherland, E.W., Rall, T.W., Menon, T. 1962. Adenyl cyclase. I. Distribution, preparation and properties.J. Biol. Chem. 237:1220

    Google Scholar 

  51. Taylor, A. 1977. Role of microtubules and microfilaments in the action of vasopressin.In: Disturbances in Body Fluid Osmolality. Thomas, E. Andreoli, Jared J. Grantham, and Floyd C. Rector, Jr., editors. p. 97. American Physiological Society, Bethesda

    Google Scholar 

  52. Ussing, H.H., Erlij, D., Lassen, U. 1974. Transport pathways in biological membranes.Annu. Rev. Physiol. 36:17

    Google Scholar 

  53. Uzunov, P., Weiss, B. 1972. Psychopharmacological agents and the cyclic AMP system of rat brain.Adv. Cyclic Nucleotide Res. 1:435

    Google Scholar 

  54. Wilson, T.H., Maloney, P.C. 1976. Speculations on the evolution of ion transport mechanisms.Fed. Proc. 35:2174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosso, A., de Sousa, R.C. Vasopressin-like effects of psychotropic drugs in amphibian epithelia. J. Membrain Biol. 40 (Suppl 1), 305–321 (1978). https://doi.org/10.1007/BF02026013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02026013

Keywords

Navigation