Skip to main content
Log in

The uptake of calcium-45 in the acellular-boned toadfish

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Bone growth and calcium metabolism were studied in marine acellular-boned toadfish (Opsanus tau) by tetracycline and by45Ca labeling over a 26-day period. The uptake of tracer in vertebrae was initially faster than in the jaws, but the percent retention of45Ca on a gram ash basis in these tissues was not significantly different after 4–6 hours. This was the time at which microdensitometric analysis of contact autoradiographs of jaw sections indicated that peak45Ca uptake had occurred on all cortical bone surfaces. No loss of45Ca from bone surfaces was detected during the next 14 days. The differences in45Ca uptake in these tissues appeared to be related to the relative surface areas of bone rather than to differences in mineral content per unit volume of bone. Attempts to measure appositional bone growth by the separation of two tetracycline labels administered at an interval of 18 days were unsuccessful, and only a single subperiosteal fluorescent band 8–9 μ thick was observed. This was probably the result of a very low rate of excretion of tetracycline from the blood, together with a very low appositional rate of bone growth of only 0.2–0.3 μ/day. The fall in the plasma radioactivity was almost inversely proportional to time since injection. No diffuse labeling could be detected, due presumably to the absence of osteocytes, in lacunae and canaliculi which, in cellular bone, permits diffusion of calcium ions from extracellular fluid to bone crystals deep within the skeleton. The diffuse component, if present, was less than one-fifth that expected in cellular bone.

Résumé

La croissance osseuse et le métabolisme du calcium sont étudiés chezOpsanus tau marin, à os acellulaire, à l'aide de marquages à la tétracycline et45Ca, injectés par voie intra-musculaire pendant 26 jours. La localisation du marquage au niveau des vertèbres est initialement plus rapide au niveau des maxillaires, mais le pourcentage de rétention du45Ca au niveau de ces tissus, en se basant sur des grammes de cendres, n'est pas significativement différent après 4–6 heures. C'est le temps au bout duquel l'analyse microdensitométrique d'autoradiographies par contact des coupes de maxillaires indique un maximum d'absorption de45Ca au niveau de toutes les surfaces corticales osseuses. Aucune perte de45Ca des surfaces osseuses n'est mise en évidence durant les 14 jours suivants. Les différences d'absorption du45Ca dans ces tissus semblent liées aux surfaces osseuses relatives, plutôt qu'aux différences du contenu minéral par unité de volume d'os. Des essais de mesure de l'apposition osseuse par séparation de deux injections de tétracycline, à des intervalles de 18 jours, furent réalisés sans succès et une seule bande fluorescente sous-périostée, de 8–9 μ de large a été observée. Ce fait est probablement lié à la vitesse d'excrétion sanguine très lente de l'os, d'environ 0.2–0.3 μ par jour. La chute de la radioactivité du plasma est presqu'inversement proportionnelle au temps après injection. Aucun marquage diffus n'a pu être localisé, sans doute, par suite de l'absence d'ostéocytes, de lacunes et de canalicules qui, dans l'os cellulaire, facilite la diffusion des ions calciques du liquide extracellulaire vers les cristaux osseux situés profondément dans le squelette. Le composé diffus, s'il est présent, constitue moins d'un cinquième de ce que l'on s'attend à trouver dans l'os cellulaire.

Zusammenfassung

Das Knochenwachstum und der Calciummetabolismus wurden beim knochenzellosen marinen Krötenfisch (Opsanus tau) während 26 Tagen anhand von Tetracyclin- und45Ca-Markierung verfolgt. Die Aufnahme des Isotopes erfolgte vorerst rascher in den Wirbelkörpern als in den Kieferknochen, jedoch war die prozentuale Retention von45Ca, auf das Aschegewicht bezogen, in diesen Geweben nach 4–6 Std nicht signifikant verschieden. Nach dieser Zeit konnte anhand von mikrodensitometrischen Untersuchungen von Kieferschnitt-Autoradiographien festgestellt werden, daß in allen Corticalis-Oberflächen die maximale45Ca-Aufnahme stattgefunden hatte. Während der folgenden 14 Tage konnte kein45Ca-Verlust von den Knochenoberflächen nachgewiesen werden. Die Unterschiede der45Ca-Aufnahme in diesen Geweben scheinen eher mit der relativen Oberflächengröße der Knochen als mit dem Mineralgehalt pro Knochenvolumen in Zusammenhang zu stehen. Versuche, die angelagerte Knochenschicht durch zwei, im Abstand von 18 Tagen vorgenommene Tetracyclin-Markierungen zu messen, verliefen ergebnislos; es konnte nur eine einzige 8–9 μ dicke, subperiostale Fluoreszenzschicht beobachtet werden. Dies war vermutlich einer sehr langsamen Abnahme des Tetracyclins im Blut, verbunden mit einer stark verlangsamten Knochenbildung von nur 0,2–0,3 μ pro Tag zuzuschreiben. Die Abnahme der Radioaktivität im Plasma war beinahe umgekehrt proportional zur Zeitspanne seit der Injektion. Dies ist vermutlich auf das Fehlen von Osteocyten, Lacunae und Canaliculi zurückzuführen, die ja im zellulären Knochen eine Diffusion von Calciumionen aus der Extrazellulärflüssigkeit zu den tiefer im Skelett liegenden Knochenkristallen ermöglichen. Wenn eine diffuse Komponente vorlag, so betrug sie weniger als ⅕ der für zellulären Knochen erwarteten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bevelander, G., Gross, R. J.: Influence of tetracycline on calcification in normal and regenerating teleost scales. Nature (Lond.)193, 1098 (1962).

    Google Scholar 

  • —, Nakahara, H.: Correlation between tetracycline binding and mineralization in dentin and enamel. Anat. Rec.153, 141–148 (1965).

    PubMed  Google Scholar 

  • ——, Rolle, G. K.: Inhibition of skeletal formation in the chick embryo following administration of tetracycline. Nature (Lond.)184, 728 (1959).

    Google Scholar 

  • Bigelow, H. B., Schroeder, W. C.: Fishes of the Gulf of Maine. Fishery Bull. of the Fish and Wildlife Service No 74 (1953).

  • Boroughs, H., Reid, D. F.: The role of the blood in the transportation of Strontium90 and Yttrium90 in teleost fish. Biol. Bull.115, 64–73 (1958).

    Google Scholar 

  • —, Townsley, S. J., Hiatt, H. W.: The metabolism of radionuclides by marine organisms. I. The uptake, accumulation, and loss of Strontium89 by fishes. Biol. Bull.111, 336–351 (1956).

    Google Scholar 

  • Cohen, J., Maletskos, C. G., Marshall, J. H., Williams, J. B.: Radioactive calcium tracer studies in bone grafts. J. Bone Jt Surg. A39, 561–577 (1957).

    Google Scholar 

  • Edmund, A. G.: Tooth replacement phenomena in the lower vertebrates. Contribution No 52, Royal Ontario Muserum, Toronto, 1–190 (1960).

  • Enlow, D. H., Brown, S. O.: A comparative histological study of fossil and recent bone tissues. Part I. Texas J. Sci.8, 405–443 (1956).

    Google Scholar 

  • Fanelli, G. M., Jr., Nigrelli, R. F.: Renal excretion of tetracycline in the aglomerular toadfish. Proc. Soc. exp. Biol. (N. Y.)114, 582–584 (1963).

    Google Scholar 

  • Filippi, B., Mela, V.: Malformazioni congenite facciali e degli arti da tetraciclina. Minerva chir.12, 1106–1110 (1957).

    PubMed  Google Scholar 

  • Gregory, W.: Fish skulls. Trans. Amer. phil. Soc.23, part 2 (1933).

    Google Scholar 

  • Harris, W.: A microscopic method of determining rates of bone growth. Nature (Lond.)188, 1308–1309 (1960).

    Google Scholar 

  • —, Jackson, R. H., Jowsey, J.: Thein vivo distribution of tetracycline in canine bone. J. Bone Jt Surg. A44, 1308–1320 (1962).

    Google Scholar 

  • —, Lavorgna, J., Hamblen, D. L., Haywood, E. A.: The inhibition of ossificationin vivo. Clin. Ortho. No61, 52–60 (1968).

    Google Scholar 

  • Hevesy, G.: Rate of renewal of the fish skeleton. Acta physiol. scand.9, 234–247 (1945).

    Google Scholar 

  • Irving, J. T.: A histological staining method for sites of calcification in teeth and bone. Arch. oral Biol.1, 89–96 (1959).

    PubMed  Google Scholar 

  • —: The sudanophil material at sites of calcification. Arch. oral. Biol.8, 735–745 (1963).

    Google Scholar 

  • Jensen, A. C., Cumming, K. B.: Use of lead compounds and tetracycline to mark scales and otoliths of marine fishes. Progressive Fish-Culturalist29, 166–167 (1967).

    Google Scholar 

  • Jowsey, J.: Age changes in human bone. Clin. Orthoped. Rel. Res.17, 210–218 (1960).

    Google Scholar 

  • Jozuka, K., Morita, O., Ando, H., Yamabe, T., Mashiko, K.: Studies on the calcium uptake by marine teleosts of Labridae. Ann. Rep. Noto Marine Lab., Fac. Sci. Univ. Kanazawa3, 11–16 (1963).

    Google Scholar 

  • Kölliker, A.: On the different types in the microscopic structure of the skeleton of osseous fishes. Proc. roy. Soc.9, 656–668 (1857–1859).

    Google Scholar 

  • Lee, W. R., Marshall, J. H., Sissons, H. A.: Calcium accretion and bone formation in dogs. J. Bone Jt Surg. B47, 157–180 (1965).

    Google Scholar 

  • Likins, R. C., Pakis, G. A.: Bone growth and uptake of radiocalcium in tetracycline-treated rats. Nature (Lond.)203, 1069–1070 (1964).

    Google Scholar 

  • macDonald, N. S., Ibsen, K. H., Urist, M. R.: Effect of tetracycline on retention of calcium and strontium in rodents. Proc. Soc. exp. Biol. (N. Y.)115, 1125 (1964).

    Google Scholar 

  • Marshall, J. H.: Theory of alkaline earth metabolism. J. theor. Biol.6, 382–412 (1964).

    Google Scholar 

  • —, Onkelinx, C.: Radial diffusion and power function retention of alkaline earth radioisotopes in adult bone. Nature (Lond.)217, 742–743 (1968).

    Google Scholar 

  • —, Rowland, R. E., Jowsey, J.: Microscopic metabolism of calcium in bone. Radiat. Res.10, 213–233 (1959).

    PubMed  Google Scholar 

  • Mashiko, K., Jozuka, K.: Studies on the calcium uptake by teleost fishes. I.45Ca uptake by the crucian carp. Sci. Rep. Kanazawa Univ.8, 107–126 (1962).

    Google Scholar 

  • ——: Turnover of45Ca by the scale of crucian carp. Ann. Rep. Noto Marine Lab., Univ. Kanazawa4, 53–58 (1964a).

    Google Scholar 

  • ——: Absorption and excretion of calcium by teleost fishes with special reference to routes followed. Ann. zool. jap.37, 41–50 (1964a).

    Google Scholar 

  • McColl, J. D., Globus, M., Robinson, S.: Effect of some therapeutic agents on the developing rat fetus. Toxicol. appl. Pharmacol.7, 409–417 (1965).

    Google Scholar 

  • Milch, R. A., Rall, D. P., Tobie, J. E.: Fluorescence of tetracycline antibiotics in bone. J. Bone Jt Surg. A40, 897–910 (1958).

    Google Scholar 

  • Moss, M. L.: Osteogenesis of acellular teleost fish bone. Amer. J. Anat.108, 99–110 (1961a).

    Google Scholar 

  • —: The initial phylogenetic appearance of bone: An experimental hypothesis. Trans. N. Y. Acad. Sci.23, 495–500 (1961b).

    PubMed  Google Scholar 

  • —: Studies of the acellular bone of teleost fish. I. Morphological and systematic variations. Acta anat. (Basel)46, 343–426 (1961).

    Google Scholar 

  • —, Freilich, M.: Studies of the acellular bone of teleost fish. IV. Inorganic content of calcified tissues. Acta anat. (Basel)55, 1–8 (1963).

    Google Scholar 

  • —, Posner, A. S.: X-ray diffraction study of acellular teleost bone. Nature (Lond.)188, 1037–1038 (1961).

    Google Scholar 

  • Norris, W. P., Chavin, W., Lombard, L. S.: Studies of calcification in a marine teleost. N. Y. Acad. Sci.109, 312–336 (1963).

    Google Scholar 

  • Pouchet, G.: Du development du squelette des poissons osseux. J. Anat. (Paris) 288–308 (1875).

  • Queckett, J.: On the intimate structure of bone, as composing the skeleton in the four great classes of animals, viz., mammals, birds, reptiles, and fishes, with some remarks on the great value of the knowledge of such structure in determining the affinities of minute fragments of organic remains. Trans. micr. Soc.1, 46–64 (1844).

    Google Scholar 

  • Reichert, E. T., Brown, A. P.: Blood volume data. Carnegie Inst. Publ. No 116 (1909).

  • Roche, J., Collet, J.: Recherches sur l'ossification. VIII. Activité phosphatisique des diverses organs osseux au cours du devéloppement chez la sardine et rôle de la phosphatase dans la formation du squelette. Bull. Soc. Chim. biol.22, 245–262 (1940).

    Google Scholar 

  • Rosenthal, H. L.: Uptake and turnover of Calcium-45 by the guppy. Science124, 571–574 (1956).

    PubMed  Google Scholar 

  • —: Uptake of Calcium-45 and Strontium-90 from water by freshwater fishes. Science126, 699–700 (1957).

    PubMed  Google Scholar 

  • —: Accumulation of Strontium-90 and Calcium-45 by freshwater fishes. Proc. Soc. exp. Biol. (N. Y.)104, 88–91 (1960).

    Google Scholar 

  • —: Uptake, turnover and transport of bone-seeking elements in fishes. N. Y. Acad. Sci.109, 278–293 (1963).

    Google Scholar 

  • Rowland, R. E.: Exchangeable bone calcium. Clin. orthop.49, 233–248 (1966).

    PubMed  Google Scholar 

  • Saxen, L.: Effect of tetracycline on osteogenesisin vitro. J. exp. Zool.162, 269–294 (1966).

    Google Scholar 

  • Sayegh, F.: H3-proline and tetracycline as marking agents in the study of reparative dentine formation. Oral Surg.23, 221–229 (1967).

    PubMed  Google Scholar 

  • Schmidt, W. J.: Die Schmelznatur der eisenoxidhaltigen Kappe auf Teleostier-Zähnen. Z. Zellforsch.93, 447–450 (1969).

    PubMed  Google Scholar 

  • Schwartz, F. J., Dutcher, B. W.: Age, growth, and food of the oyster toadfish near Solomons, Maryland. Trans. Amer. Fisheries Soc.92, 170–173 (1963).

    Google Scholar 

  • Stephan, P.: Recherches histologiques sur la structure du tissu osseux des poissons. Bull. Sci. Franc., Belg.33, 281–429 (1900).

    Google Scholar 

  • Sternberg, J.: Effect of tetracyclines on the turnover of45Ca in young rats. Internat. J. appl. Rad. Isotop.17, 497–512 (1966).

    Google Scholar 

  • Van Oosten, J.: Factors affecting the growth of fish. Trans. 9th N. Amer. Wildlife Conf., p. 177–183 (1944).

  • Weber, D. D., Ridgeway, G. J.: The deposition of tetracycline drugs in bones and scales of fish and its possible use for marking. Progressive Fish-Culturalist24, 150–155 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, D.J., Simmons, N.B. & Marshall, J.H. The uptake of calcium-45 in the acellular-boned toadfish. Calc. Tis Res. 5, 206–221 (1970). https://doi.org/10.1007/BF02017550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017550

Key words

Navigation