Skip to main content
Log in

ATP-dependent calcium transport by a Golgi-enriched membrane fraction from mouse mammary gland

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Crude particulate preparations from the mammary glands of lactating mice were shown to transport calcium against a concentration gradient in the presence of ATP and mitochondrial inhibitors. Density gradient centrifugation with both sucrose and Percoll gradients indicated the presence of ATP-dependent transport in more than one membrane fraction. A Golgi-enriched membrane fraction possessed the highest specific activity of calcium transport. Digitonin, which increases the permeability of plasma membranes to calcium, did not affect this process. The Golgi fraction contained a 100,000 Dalton protein whose phosphorylation by γ-[32P]-ATP was enhanced by a micromolar concentrations of free calcium. The phosphorylation was acid-stable and hydroxylamine-sensitive. These properties suggest that Golgi membranes in an actively secreting mammary epithelium possess a calcium transport system which resembles the calcium ATPase present in the sarcoplasmic reticulum of skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumrucker, C.W., Keenan, T.W. 1975. Membranes of mammary gland. X. Adenosine-triphosphate-dependent calcium accumulation by Golgi-apparatus-rich fractions from bovine mammary gland.Exp. Cell Res. 90:253–260

    Article  PubMed  Google Scholar 

  • Black, B.L., McDonald, J.M., Jarett, L. 1980. Characterization of Mg2+ and (Ca2++Mg2+)-ATPase activity in adipocyte endoplasmic reticulum.Arch. Biochem. Biophys. 199:92–102

    Article  PubMed  Google Scholar 

  • Blaustein, M.P., Ratzlaff, R.W., Schweitzer, E.S. 1980. Control of intracellular calcium in presynaptic nerve terminals.Fed. Proc. 39:2790–2795

    PubMed  Google Scholar 

  • Blitz, A.L., Fine, R.E., Toselli, P.A. 1977. Evidence that coated vesicles isolated from brain are calcium-sequestering organelles resembling sarcoplasmic reticulum.J. Cell Biol. 75:135–147

    Article  PubMed  Google Scholar 

  • Carafoli, E., Crompton, M. 1978. The regulation of intercellular calcium.Curr. Top. Membr. Transp. 10:151–216

    Google Scholar 

  • Doss, R.C., Carraway, C.A.C., Carraway, K.L. 1979. Multiple forms of 5′-nucleotidase from lactating rat mammary gland resulting from the association of the enzyme with different membrane fractions.Biochim. Biophys. Acta 570:96–106

    PubMed  Google Scholar 

  • Fairbanks, G., Steck, T.L., Wallach, D.F.H. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry 10:2606–2617

    Article  PubMed  Google Scholar 

  • Hegyvary, C., Kang, K., Bandi, Z. 1979. Automated assay of phosphohydrolases by measuring the released phosphate without deproteinization.Anal. Biochem. 94:397–401

    Article  PubMed  Google Scholar 

  • Henkart, M. 1980. Identification and function of intracellular calcium stores in axons and cell bodies of neurons.Fed. Proc. 39:2783–2789

    PubMed  Google Scholar 

  • Howell, S.L., Montague, W. 1975. Regulation by nucleotides of45calcium uptake in homogenates of rat islets of Langerhans.FEBS Lett. 52:48–52

    Article  PubMed  Google Scholar 

  • Inesi, G., Cohen, J.A., Coan, C.B. 1976. Two functional steps of sarcoplasmic reticulum ATPase.Biochemistry 15:5293–5298

    Article  PubMed  Google Scholar 

  • Jenness, R. 1979. Comparative aspects of milk proteins.J. Dairy Res. 46:197–210

    PubMed  Google Scholar 

  • Jorgensen, P.L. 1974. Purification and characterization of (Na++K+)-ATPase. III. Purification from the outer medulla of mammalian kidney after removal of membrane components by sodium dodecyl sulfate.Biochim. Biophys. Acta 356:36–52

    PubMed  Google Scholar 

  • Keenan, T.W., Huang, C.M., Morré, D.J. 1972. Membranes of the mammary gland. V. Isolation of Golgi apparatus and rough endoplasmic reticulum from bovine mammary gland.J. Dairy Sci. 55:1577–1585

    PubMed  Google Scholar 

  • Kerrick, W.G.L., Donaldson, S.K.B. 1972. The effects of Mg2+ on submaximum Ca2+-activated tension in skinned fibers of frog skeletal muscle.Biochim. Biophys. Acta 275:117–122

    PubMed  Google Scholar 

  • Knauf, P.A., Proverbio, F., Hoffman, J.F. 1974. Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts.J. Gen. Physiol. 63:324–336

    Article  PubMed  Google Scholar 

  • Kuhn, N.J., White, A. 1977. The role of nucleoside disphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus.Biochem. J. 168:423–433

    PubMed  Google Scholar 

  • McGraw, C.F., Somlyo, A.V., Blaustein, M.P. 1980. Probing for calcium at presynaptic nerve terminals.Fed. Proc. 39:2796–2801

    PubMed  Google Scholar 

  • Moore, L., Chen, T., Knapp, H.K., Jr., Landon, E.J. 1975. Energy-dependent calcium sequestration activity in rat liver microsomes.J. Biol. Chem. 250:4562–4568

    PubMed  Google Scholar 

  • Moore, L., Pastan, I. 1977. Energy-dependent calcium uptake activity in cultured mouse fibroblast microsomes: Regulation of the uptake system by cell density.J. Biol. Chem. 252:6304–6309

    PubMed  Google Scholar 

  • Murphy, E., Coll, K., Rich, J.L., Williamson, J.R. 1980. Hormonal effects on calcium homeostasis in isolated hepatocytes.J. Biol. Chem. 255:6600–6608

    PubMed  Google Scholar 

  • Neville, M.C., Peaker, M. 1979. The secretion of calcium and phosphorus into milk.J. Physiol. 290:59–67

    PubMed  Google Scholar 

  • Neville, M.C., Selker, F., Semple, K.S., Watters, C.D. 1980. ATP-dependent calcium transport by a Golgi membrane enriched fraction from mouse mammary gland.J. Supramol. Struct. Suppl 4:101

    Google Scholar 

  • Papazian, D., Rahaminoff, H., Goldin, S.M. 1979. Reconstitution and purification by “transport specificity fractionation” of an ATP-dependent calcium transport component from synaptosome-derived membranes.Proc. Nat. Acad. Sci. USA 76:3708–3712

    PubMed  Google Scholar 

  • Pennington, R.S. 1961. Biochemistry of dystrophic muscle: Mitochondrial succinate-tetrazolium reductase and adenosine triphosphate.Biochem. J. 80:648–654

    Google Scholar 

  • Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable.Anal. Biochem. 83:346–356

    Article  PubMed  Google Scholar 

  • Poisner, A.M., Hava, M. 1970. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. IV. Adenosine triphosphate-activated uptake of calcium by microsomes and mitochondria.Mol. Pharmacol. 6:407–415

    PubMed  Google Scholar 

  • Rudenberg, P., Watters, C.D. 1978. Changes in the protein composition of the bovine milk fat globule membrane during early lactation.Physiologist 21:102

    Google Scholar 

  • Saacke, R.G., Heald, C.W. 1974. Cytological aspects of milk formation and secretion. In:Lactation, A Comprehensive Treatise. B.L. Larson, editor. Vol. 2, pp. 147–189. Academic Press, N.Y.

    Google Scholar 

  • Schatzmann, H.J., Bürgin, H. 1978. Calcium in red cells.Ann. N.Y. Acad. Sci. 307:125–147

    PubMed  Google Scholar 

  • Sehlin, J. 1976. Calcium uptake by subcellular fraction of pancreatic islets. Effects of nucleotides and theophylline.Biochem. J. 156:63–69

    PubMed  Google Scholar 

  • Sumida, M., Tonomura, Y. 1974. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2+ translocation coupled with formation of a phosphorylated intermediate.J. Biochem. 75:283–297

    PubMed  Google Scholar 

  • Tada, M., Yamamoto, T., Tonomura, Y. 1978. Molecular mechanism of active calcium transport by sarcoplasmic reticulum.Physiol. Rev. 58:1–79

    PubMed  Google Scholar 

  • Wooding, F.B.P. 1977. Comparative mammary fine structure.In: Comparative Aspects of Lactation. M. Peaker, editor. pp. 1–42. Academic Press, London

    Google Scholar 

  • Wuytack, F., Casteels, R. 1980. Demonstration of a (Ca++ and Mg++)-ATPase activity probably related to Ca++ transport in the microsomal fraction of porcine coronary artery smooth muscle.Biochim. Biophys. Acta 595:257–263

    PubMed  Google Scholar 

  • Yamada, S., Tonomura, Y. 1972. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VII. Recognition and release of Ca2+ ions.J. Biochem. 72:417–425

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neville, M.C., Selker, F., Semple, K. et al. ATP-dependent calcium transport by a Golgi-enriched membrane fraction from mouse mammary gland. J. Membrain Biol. 61, 97–105 (1981). https://doi.org/10.1007/BF02007636

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02007636

Key words

Navigation