Skip to main content
Log in

Temperature- and hydration-dependence of molecular mobility in seeds

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Broad-band ac dielectric relaxation spectroscopy (DRS) and various techniques of thermally stimulated currents (TSC) have been used to investigate molecular mobility in cereal and legume seeds, over wide ranges of water content and temperature. We focused our interest on the detailed study of the interactions between water and seed constituents. The results are quantitatively discussed, using various concepts dictated by the experimental techniques employed and in relation to the protein and carbohydrate contents of the seeds. In addition, the glass transition in the seeds, freezing and melting of water, and the protonic conduction process have been studied in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Mok and J. W. Dick, Cereal Chem., 68 (1991) 405.

    Google Scholar 

  2. F. Bruni, in Correlations and Connectivity: Geometric Aspects of Physics, Chemistry and Biology, H. E. Stanley and N. Ostrowsky (eds.), Kluwer, Dordrecht 1990, p. 266.

    Google Scholar 

  3. S. Ratkovic and M. Denic, Genetica, 20 (1988) 113.

    Google Scholar 

  4. R. J. Williams and A.C. Leopold, Plant Physiol., 89 (1989) 977.

    Google Scholar 

  5. C.W. Vertucci, Biophys. J., 58 (1990) 1463.

    Google Scholar 

  6. C. F. Jenner and G. P. Jones, Austr. J. Plant Physiol., 17 (1990) 107.

    Google Scholar 

  7. S. Ratkovic and P. Pissis, J. Mater. Sci., in press.

  8. S. S. Singh, M. F. Finner, P. K. Pohatgi, F. H. Buelow and M. Schaller, J. Mater. Sci., 26 (1991) 274.

    Google Scholar 

  9. M. Peleg, Rheol. Acta, 32 (1993) 575.

    Google Scholar 

  10. M. Peleg, Biotechnol. Prog., 10 (1994) 385.

    Google Scholar 

  11. N. L. Nolan, J. M. Faubion and R. C. Hoseney, Cereal Chem., 63 (1986) 287.

    Google Scholar 

  12. F. Bruni, in Correlations and Connectivity: Geometric Aspects of Physics, Chemistry and Biology, H. E. Stanley and N. Ostrowsky (eds.), Kluwer, Dordrecht 1990, p. 272.

    Google Scholar 

  13. F. Bruni and A. C. Leopold, Plant Physiol., 96 (1991) 660.

    Google Scholar 

  14. F. Bruni and A. C. Leopold, Biophys. J., 63 (1992) 663.

    Google Scholar 

  15. G. Carreri and A. Giansanti, Lett. Nuovo Cimento, 40 (1984) 193.

    Google Scholar 

  16. F. Bruni, G. Carreri and A. C. Leopold, Phys. Rev. A, 40 (1989) 2803.

    PubMed  Google Scholar 

  17. T. Y. Shegoleva, Biofizika, 29 (1984) 690.

    Google Scholar 

  18. F. L. Shafer, D. Smith and J. A. Roberts, J. Microwave Power, 21 (1986) 167.

    Google Scholar 

  19. M. G. Holmes, K. McCallum and A. D. Diament, Seed Sci. Technol., 19 (1991) 413.

    Google Scholar 

  20. A.W. Kraszewski, T.-S. You and S. O. Nelson, IEEE Trans. Instrum. Meas., 38 (1989) 79.

    Google Scholar 

  21. A. Kraszewski and S. O. Nelson, J. Agric. Eng. Res., 43 (1989) 211.

    Google Scholar 

  22. S. O. Nelson, IEEE Trans. Electr. Insul., 26 (1991) 845.

    Google Scholar 

  23. A. W. Kraszewski and S. O. Nelson, Can. Agric. Eng., 34 (1992) 327.

    Google Scholar 

  24. S. O. Nelson, J. Food Eng., 21 (1994) 365.

    Google Scholar 

  25. I. D. Kuntz and W. Kauzmann, Adv. Prot. Chem., 28 (1974) 239.

    Google Scholar 

  26. J. A. Rupley and G. Careri, Adv. Prot. Chem., 41 (1991) 37.

    Google Scholar 

  27. H. Levine and L. Slade, in Physical Chemistry of Foods, H. G. Schwartzberg and R. W. Hartel (eds.), Marcel Dekker, NY 1992, p. 83.

    Google Scholar 

  28. R.B. Gregory, in Protein-Solvent Interactions, R. B. Gregory (ed.), Marcel Dekker, NY 1995, p. 191.

    Google Scholar 

  29. J. L. Finney and P. L. Poole, Comm. Mol. Cell. Biophys., 2 (1984) 129.

    Google Scholar 

  30. M. Tabellout, P.-Y. Baillif, H. Randrianantoandro, F. Litzinger, J. R. Emery, T. Nicolai and D. Durand, Phys. Rev. B, 51 (1995) 12295.

    Google Scholar 

  31. P. Pissis and L. Apekis, J. Non-Cryst. Solids, 131–3 (1991) 95.

    Google Scholar 

  32. A. Kyritsis, P. Pissis, J. L. Gomez Ribelles and M. Monleon Pradas, J. Non-Cryst. Solids, 172–4 (1994) 1041.

    Google Scholar 

  33. A. Kyritsis, P. Pissis, J. L. Gomez Ribelles and M. Monleon Pradas, J. Polym. Sci.: Polym. Phys. Ed., 32 (1994) 1001.

    Google Scholar 

  34. J. Mijovic, J. M. Kenny, A. Maffezzoli, A. Trivisano, F. Bellucci and L. Nicolais, Compos. Sci. Technol., 49 (1993) 277.

    Google Scholar 

  35. A. Kyritsis, P. Pissis and J. Grammatikakis, J. Polym. Sci: Polym. Phys. Ed., 33 (1995) 1737.

    Google Scholar 

  36. P. Braunlich (ed.), Thermally Stimulated Relaxations in Solids, Springer, Berlin 1979.

    Google Scholar 

  37. J. van Turnhout, in Topics in Applied Physics, Volume 33: Electrets, G. M. Sessler (ed.), Springer, Berlin 1980, p. 81.

    Google Scholar 

  38. J. Laudat and F. Laudat, Chem. Listy, 85 (1991) 941.

    Google Scholar 

  39. P. Pissis, A. Anagnostopoulou-Konsta, L. Apekis, D. Daoukaki-Diamanti and C. Christodoulides, J. Non-Cryst. Solids, 131–133 (1991) 1174.

    Google Scholar 

  40. R. Pethig, Dielectric and Electronic Properties of Biological Materials, Wiley, Chichester 1979.

    Google Scholar 

  41. P. Hedvig, Dielectric Spectroscopy of Polymers, Hilger, Bristol 1977.

    Google Scholar 

  42. J. R. MacDonald (ed.), Impedance Spectroscopy, Wiley, New York 1987.

    Google Scholar 

  43. P. B. Macedo, C. D. Moynihan and R. Bose, Phys. Chem. Glasses, 13 (1972) 171.

    Google Scholar 

  44. H.W. Starkweather, in Water in Polymers, S. P. Rowland (ed.), ACS Symposium Series 127, American Chemical Society, Washington, DC 1980, p. 433.

    Google Scholar 

  45. A. Anagnostopoulou-Konsta and P. Pissis, J. Phys. D: Appl. Phys., 20 (1987) 1168.

    Google Scholar 

  46. P. Pissis and A. Anagnostopoulou-Konsta, in Proceed. 5th Int. Symp. Electrets, G. M. Sessler and R. Gerhard-Mulhaupt (eds.), IEEE, New York 1985, p. 842.

    Google Scholar 

  47. J. Laudat and F. Laudat, Europhys. Lett., 20 (1992) 663.

    Google Scholar 

  48. P. Pissis, A. Anagnostopoulou-Konsta, L. Apekis, D. Daoukaki, C. Christodoulides and E. G. Sideris, IEEE Trans. El. Ins., 27 (1992) 820.

    Google Scholar 

  49. G. Carreri, G. Consolini and F. Bruni, Biophys. Chem., 37 (1990) 165.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support through the Greek Ministry of Industry, Energy and Technology (Secretariat of Research and Technology), the Czech Ministry of Education, Youth and Sport (Dept. of International Scientific and Technological Cooperation), and the Empirikos Foundation is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pissis, P., Konsta, A.A., Ratkovič, S. et al. Temperature- and hydration-dependence of molecular mobility in seeds. Journal of Thermal Analysis 47, 1463–1483 (1996). https://doi.org/10.1007/BF01992840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992840

Keywords

Navigation