Skip to main content
Log in

Visualization and ablation of phenylethanolamineN-methyltransferase producing cells in transgenic mice

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We cloned and sequenced the mouse phenylethanolamineN-methyltransferase (PNMT) gene which encodes the enzyme that catalyses the conversion of norepinephrine to epinephrine. The ability of various length sequences flanking the mouse or human PNMT genes to direct expression of reporter genes in transgenic mice was examined. We show that 9 kb of 5′ flanking sequences from the cloned mouse PNMT gene can direct expression of theEscherichia coli β-galactosidase (lacZ) gene to predicted regions of the adrenal, eye can direct in the adult transgenic mouse. The transgene was also expressed during development, in the myelencephalon, adrenal medulla and dorsal root ganglia. PNMT-producing cells were ablated by expression of the diphtheria toxin (DT-A) gene driven by the human PNMT promoter, resulting in abnormalities in the adrenal medulla, eye and testis. The hPNMT8 kb-DT-A line presents a model with which to examine the developmental ramifications of deletion of PNMT-producing cell populations from the adrenal medulla and retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, D.M., Ross, A.A., Pickel, V.A., Joh, T.H. and Reis, D.J. (1982) Distribution of dopamine, noradrenaline, and adrenaline demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes.J. Comp. Neuro. 212, 173–87.

    Google Scholar 

  • Axelrod, J. (1971) Phenylethanolamine-N-methyl-transferase (mammalian adrenal glands). In: H. Tabor and C.W. Tabor, eds.Methods in Enzymology Vol. XVIIIBMetabolism of Amino Acids and Amines, pp. 761–4. New York: Academic Press.

    Google Scholar 

  • Baetge, E.E., Behringer, R.R., Messing, A., Brinster, R.L. and Palmiter, R.D. (1988) Transgenic mice express the human phenylethanolamine-N-methyltransferase gene in adrenal medulla and retina.Proc. Natl. Acad. Sci. USA 85, 3648–52.

    Google Scholar 

  • Bohn, M.C., Goldstein, M. and Black, I.B. (1986) Expression and development of phenylethanolamine-N-methyltransferase (PNMT) in rat brainstem: studies with glucocorticoids.Dev. Biol. 114, 180–93.

    Google Scholar 

  • Brinster, R.L., Chen, H.Y., Trumbauer, M., Yagle, M.K. and Palmiter, R.D. (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs.Proc. Natl Acad. Sci. USA 82, 4438–42.

    Google Scholar 

  • Cadd, G.C., Hoyle, G.W., Quaife, C.J., Marck, B., Matsumoto, A.M., Brinster, R.L. and Palmiter, R.D. (1992) Alteration in neuro-transmitter phenotype in noradrenergic neurons.Mol. Endo. 6, 1951–60.

    Google Scholar 

  • Campos, M.B., Vitale, M.L., Ritta, M.N., Chiocchio, S.R. and Calandra, R.S. (1990) Catecholamine distribution in adult rat testis.Andrologia 22, 247–50.

    Google Scholar 

  • Cohen, J. (1987) Postnatal development of phenylethanolamine N-methyltransferase activity of rat retina.Neurosci. Lett. 83, 138–42.

    Google Scholar 

  • Collier, R.J. (1975) Diphtheria toxin: mode of action and structure.Bacteriol. Rev. 39, 54–85.

    Google Scholar 

  • Culman, J., Torda, T. and Weise, V.K. (1987) A radiometric assay for phenylethanolamineN-methyltransferase and catecholO-methyltransferase in a single tissue sample: application to rat hypothalmic nuclei, pineal gland and heart.Anal. Biochem. 164, 345–54.

    Google Scholar 

  • Evans, G.A. (1989) Dissecting mouse development with toxigenics.Genes Dev. 3, 259–63.

    Google Scholar 

  • Foster, G.A., Hokfelt, T., Coyle, J.T. and Goldstein, M. (1985) Immunohistochemical evidence for phenylethanolamine-N-methyltransferase positive/tyrosine hydroxylase-negative neurons in the retina and the posterior hypothalmus of the rat.Brain Res. 330, 183–8.

    Google Scholar 

  • Foster, G.A., Sundstrom, E., Helmer-Matyjek, E., Goldstein, M. and Hokfelt, T. (1987) Abundance in the embryonic brain stem of adrenaline during the absence of detectable tyrosine hydroxylase activity.J. Neurochem. 48, 202–7.

    Google Scholar 

  • Hadjiconstantinou, M., Cohen, J. and Neff, N.H. (1983) Epinephrine: a potential neurotransmitter in retina.J. Neurochem. 41, 1440–4.

    Google Scholar 

  • Hammang, J.R., Behringer, R.B., Baetge, E.E., Palmiter, R.D., Brinster, R.L. and Messing, A. (1990) Immortalized retinal neurons derived from SV40 T-antigen-induced tumors in transgenic mice.Neuron 4, 775–82.

    Google Scholar 

  • Hammang, J.P., Bohn, M.C. and Messing, A. (1992) Phenylethanolamine-N-methyltransferase (PNMT)-expressing horizontal cells in the rat retina: a study employing doublelabel immunohistochemistry.J. Comp. Neuro. 315, 1–7.

    Google Scholar 

  • Hammang, J.P., Behringer, R.R., Baetge, E.E., Palmiter, R.D., Brinster, R.L. and Messing, A. (1993) Oncogene expression in retinal horizontal cells of transgenic mice results in a cascade of neurodegeneration.Neuron 10, 1197–209.

    Google Scholar 

  • Hammer, R.E., Swift, G.H., Ornitz, D.M., Quaife, C.J., Palmiter, R.D., Brinster, R.L. and MacDonald, R.J. (1987) The rat elastase I regulatory element is an enhancer that directs cell specificity and developmental onset of expression in transgenic mice.Mol. Cell. Biol. 7, 2956–67.

    Google Scholar 

  • Hokfelt, T., Fuxe, K., Goldstein, M. and Joh, T.H. (1973) Immunohistochemical localization of three catecholamine synthesizing enzymes: aspects on methodology.Histochemie 33, 231–54.

    Google Scholar 

  • Howe, P.R., Costa, M., Furness, J.B. and Chalmers, J.P. (1980) Simultaneous demonstration of phenylethanolamineN-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata.Neurosci. 5, 2229–38.

    Google Scholar 

  • Kapur, R.P., Hoyle, G.W., Mercer, E.H., Brinster, R.L. and Palmiter, R.D. (1991) Some neuronal cell populations express human embryonic development.Neuron 7, 717–27.

    Google Scholar 

  • Kennedy, B., Elayan, H. and Ziegler, M.G. (1990) Lung epinephrine synthesis.Am. J. Physiol. 238, L227–31.

    Google Scholar 

  • Keyser, K.T., Karten, H.J., Katz, B. and Bohn, M.D. (1987) Catecholaminergic horizontal and amacrine cells in the ferret retina.J. Neurosci. 7, 3996–4004.

    Google Scholar 

  • Lamford, R.E., White, R.G., Dunham, R.G. and Kanda, P. (1988) Effect of basic and nonbasic amino acid substitutions on transport induced by simian virus 40 T-antigen synthetic peptide nuclear transport signals.Mol. Cell. Biol. 8, 2722–9.

    Google Scholar 

  • Lloyd, R.V., Sisson, J.C., Shapiro, B. and Verhofstad, A.A.J. (1986) Immunohistochemical localization of epinephrine, norepinephrine, catecholamine synthesizing enzymes and chromogranin in neuroendocrine cells and tissues.Am. J. Pathol. 125, 45–54.

    Google Scholar 

  • Mercer, E.H., Hoyle, G.W., Kapur, R.P., Brinster, R.L. and Palmiter, R.D. (1991) The dopamine B-hydroxylase gene promoter directs expression ofE. coli lacZ to sympathetic and other neurons in adult transgenic mice.Neuron. 7, 703–16.

    Google Scholar 

  • Morita, S., Kobayashi, K., Hidaka, H. and Nagatsu, T. (1992) Organization and complete nucleotide sequence of the gene encoding mouse phenylethanolamineN-methyltransferase.Mol. Br. Res. 133, 313–19.

    Google Scholar 

  • Nguyen-Legros, J., Martin-Martinelli, E., Simon, A., Demoroy, L. and Vigny, A. (1985) Co-localization of tyrosine hydroxylase and phenylethanolamine-N-methyltransferase in the rat retina: a re-examination using double labeling on serial-thin sections.Exp. Eye Res. 43, 575–84.

    Google Scholar 

  • Ornitz, D.M., Palmiter, R.D., Hammer, R.E., Brinster, R.L., Swift, G.H. and MacDonald, R.J. (1985) Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice.Nature 313, 600–2.

    Google Scholar 

  • Palmiter, R.D., Behringer, R.R., Quaife, C.J., Maxwell, F., Maxwell, I.H. and Brinster, R.L. (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene.Cell 50, 435–43.

    Google Scholar 

  • Park, D.H., Teitelman, G., Evinger, M.J., Woo, J.I., Ruggiero, D.A., Albert, V.R., Baetge, E.E., Pickel, V.M., Reis, D.J. and Joh, T.H. (1986) PhenylethanolamineN-methyltransferase containing neurons in rat retina: Immunohistochemistry, immunochemistry, and molecular biology.J. Neurosci. 6, 1108–13.

    Google Scholar 

  • Pendleton, R.G., Gessner, G. and Sawyer, J. (1978) Studies on the distribution of phenylethanolamineN-methyltransferase and epinephrine in the rat.Res. Comm. Chem. Path. Pharm. 21, 315–25.

    Google Scholar 

  • Reis, D.T., Morrison, J. and Ruggiero, D.A. (1988) The C1 area of the brainstem in tonic and reflex control of blood pressure.Hypertension II (suppl. I): I8-I13.

    Google Scholar 

  • Reis, D.J., Joh, T.H. and Goodman, H.M. (1990) Identification of a functional glucocorticoid response element in the phenylethanolamineN-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture.J. Neurosci. 10, 520–30.

    Google Scholar 

  • Ruggiero, D.A., Ross, C.A., Anwar, M., Park, D.H., Joh, T.H. and Reis, D.J. (1985) Distribution of neurons containing phenylehtanolamineN-methyltransferase in medulla and hypothalamus of rat.J. Comp. Neurol. 239, 127–54.

    Google Scholar 

  • Sheehan, D.C. and Hrapchak, B.B. (1980)Theory and Practice of Histotechnology, St Louis: C. V. Mosby Co.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning: a Laboratory Manual (2nd ed.) Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Torda, R., Culman, J. and Petrikova, M. (1987) Distribution of phenylethanolamine N-methyltransferase in the rat heart: effect of 6-hydroxydopamine.Eur. J. Phar. 141, 305–8.

    Google Scholar 

  • Trendelenburg, U. and Weiner, N. (eds) (1989)Catecholamines I andCatecholamines II, Berlin: Springer-Verlag.

    Google Scholar 

  • Verhofstad, A.A.J., Hokfelt, T., Goldstein, M., Steinbusch, H.W.M. and Joosten, H.W.J. (1979) Apprearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine beta-hydroxylase and phenylethanoaminen-methyl transferase during ontogenesis of the adrenal medulla: an immunohistochemical study in the rat.Cell Tissue Res. 200, 1–13.

    Google Scholar 

  • Versaux-Botteri, C., Martin-Martinelli, E., Nguyen-Legros, J., Geffard, M., Vigny, A. and Demoroy, L. (1986) Regional specialization of the rat retina: catecholamine-containing amacrine cell characterization and distribution.J. Comp. Neurol. 343, 423–33.

    Google Scholar 

  • Yamaizumi, M., Medada, E., Uchida, T. and Okada, Y. (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell.Cell 15, 245–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaife, C.J., Hoyle, G.W., Froelick, G.J. et al. Visualization and ablation of phenylethanolamineN-methyltransferase producing cells in transgenic mice. Transgenic Research 3, 388–400 (1994). https://doi.org/10.1007/BF01976770

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01976770

Keywords

Navigation