Skip to main content
Log in

Ectopic transgene expression in the retina of four transgenic mouse lines

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR- and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badea TC, Nathans J (2004) Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 480:331–351

    Article  PubMed  Google Scholar 

  • Bagnoli P, Dal Monte M, Casini G (2003) Expression of neuropeptides and their receptors in the developing retina of mammals. Histol Histopathol 18:1219–1242

    CAS  PubMed  Google Scholar 

  • Cepko CL (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr Opin Neurobiol 9:37–46

    Article  CAS  PubMed  Google Scholar 

  • Deniz S, Wersinger E, Schwab Y, Mura C, Erdelyi F, Szabo G, Rendon A, Sahel JA, Picaud S, Roux MJ (2011) Mammalian retinal horizontal cells are unconventional GABAergic neurons. J Neurochem 116:350–362

    Article  CAS  PubMed  Google Scholar 

  • Dhingra A, Sulaiman P, Xu Y, Fina ME, Veh RW, Virdi N (2008) Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse. J Comp Neurol 510:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei Y, Hughes TE (2001) Transgenic expression of the jellyfish green fluorescent protein in the cone photoreceptors of the mouse. Vis Neurosci 18:615–623

    Article  CAS  PubMed  Google Scholar 

  • Gábriel R, Wilhelm M, Straznicky C (1992) Microtubule-associated protein 2 (MAP2)-immunoreactive neurons in the retina of Bufo marinus: colocalisation with tyrosine hydroxylase and serotonin in amacrine cells. Cell Tissue Res 269:175–182

    Article  PubMed  Google Scholar 

  • Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 12:9817–9823

    Article  Google Scholar 

  • Grybko MJ, Hamh E, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S (2011) A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci 33:1786–1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Gustincich S, Feigenspan A, Wu D-DK, Koopman LJ, Raviola E (1997) Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18:723–736

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki T, Kehoe SM, Nakano T, Terada N (2006) The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol Cell Biol 26:7539–7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao MM, Bornstein JC, Young HM (2013) Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP Mice. J Comp Neurol 531:3358–3370

    Article  Google Scholar 

  • Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Inta D, Monyer H, Wässle H (2009) Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience 160:126–139

    Article  CAS  PubMed  Google Scholar 

  • Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3:e159

    Article  PubMed  PubMed Central  Google Scholar 

  • Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, Baccus SA, Barres BA (2008) Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:425–438

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129:831–842

    CAS  PubMed  Google Scholar 

  • Ivanova E, Hwang G-S, Pan Z-H (2010) Characterization of transgenic mouse lines expressing Cre recombinase. Neuroscience 135:233–243

    Article  Google Scholar 

  • Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201

    CAS  PubMed  Google Scholar 

  • Knop GC, Pottek M, Monyer H, Weiler R, Dedek K (2014) Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 39:800–810

    Article  PubMed  Google Scholar 

  • Lopez-Bendito G, Sturgess K, Erdélyi F, Szabó G, Molnár Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14:1122–1133

    Article  PubMed  Google Scholar 

  • Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AS, Lein ES, Zeng H (2009) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neurosci 13:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    Article  CAS  PubMed  Google Scholar 

  • May CA, Nakamura K, Fujiyama F, Yanagawa Y (2008) Quantification and characterization of GABA-ergic amacrine cells in the retina of GAD67-GFP knock-in mice. Acta Ophthalmol 86:395–400

    Article  PubMed  Google Scholar 

  • Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064

    CAS  Google Scholar 

  • Mieziewska KE, van Veen T, Murray JM, Aguirre GD (1991) Rod and cone specific domains in the interphotoreceptor matrix. J Comp Neurol 308:371–380

    Article  CAS  PubMed  Google Scholar 

  • Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:23–36

    CAS  PubMed  Google Scholar 

  • Mosinger JL, Yazulla S, Studhulme KM (1986) GABA-like immunoreactivity in the vertebrate retina: a species comparison. Exp Eye Res 42:631–644

    Article  CAS  PubMed  Google Scholar 

  • Pang JJ, Gao F, Wu SM (2003) Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF ganglion cells in the mouse retina. J Neurosci 23:6063–6073

    CAS  PubMed  Google Scholar 

  • Pereira L, Yi F, Merrill BJ (2006) Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 26:7479–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474:304–324

    Article  PubMed  Google Scholar 

  • Sarthy V, Hoshi H, Mills S, Dudley VJ (2007) Characterization of green fluorescent protein expressing retinal cells in CD44 transgenic mice. Neuroscience 144:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  • von Engelhardt J, Eliava M, Meyer AH, Rozov A, Monyer H (2007) Functional characterization of intrinsic cholinergic interneurons in the cortex. J Neurosci 27:5633–5642

    Article  Google Scholar 

  • Vuong HE, Sevilla Müller LP, Hardi CN, McMahon DG, Brecha NC (2015) Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 307:319–337. doi:10.1016/j.neuroscience.2015.08.060

    Article  CAS  PubMed  Google Scholar 

  • Wang C-T, Blankenship AG, Anishchenko A, Elstrott J, Fikhman M, Nakanishi S, Feller MB (2007) GABAA receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. J Neurosci 27:9130–9140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi F, Ball J, Stoll KE, Satpute VC, Mitchell SM, Pauli JL, Holloway BB, Johnston AD, Nathanson NN, Deisseroth K, Gerber DJ, Tonegawa S, Lawrence JJ (2014) Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol 592:3463–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi F, Catudio-Garrett E, Gabriel R, Wilhelm M, Erdelyi F, Szabo G, Deisseroth K, Lawrence JJ (2015) Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front Synaptic Neurosci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) Neuron A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:771–780

    Article  CAS  PubMed  Google Scholar 

  • Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205

    Article  CAS  PubMed  Google Scholar 

  • Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD (2014) The role of homeobox genes in retinal development and disease. Dev Biol 393(2):195–208. doi:10.1016/j.ydbio.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang SSM, Xu X, Liu MG, Zhao H, Soares MB, Barnstable CJ, Fu XY (2006) A biphasic pattern of gene expression during mouse retina development. BMC Dev Biol 6:48

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by NAP KTIA_13_NAP-A-I/12 (R.G.) and NIH R01 NS069689 (J.J.L.) Grants. M.W. was in receipt of a short-term fellowship from the College of Health Professions and Biomedical Sciences, University of Montana. R.G. was a Fulbright Fellow in this institution. This project was also supported through Grants from the Center for Environmental Health Sciences COBRE P20RR017670, Center for Biomolecular Structure and Dynamics P20GM103546, COBRE Center for Structural and Functional Neuroscience P20RR015583, and an internal Grant from the University of Montana, Department of Biomedical Sciences. We thank Feng Yi and Elizabeth Catudio-Garrett for help with the transgenic animals, Sukumar Vijayaraghavan (UC-Denver) for ChAT-tauGFP mice, and Edit Kiss with the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márta Wilhelm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gábriel, R., Erdélyi, F., Szabó, G. et al. Ectopic transgene expression in the retina of four transgenic mouse lines. Brain Struct Funct 221, 3729–3741 (2016). https://doi.org/10.1007/s00429-015-1128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1128-2

Keywords

Navigation