Skip to main content
Log in

Pharmacokinetic interaction between 1,3-butadiene and styrene in Sprague-Dawley rats

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Gas uptake studies were carried out to evaluate kinetic interactions between 1,3-butadiene and styrene in Sprague-Dawley rats. The animals were co-exposed by inhalation to a mixture of 1,3-butadiene between 20 and 6000 ppm (v/v) and styrene between 0 and 500 ppm. The data demonstrate that metabolism of 1,3-butadiene was partialy inhibited by styrene. The inhibition was competitive at atmospheric concentrations of styrene up to 90 ppm. Higher concentrations of styrene resulted in a small additional inhibition only. The apparent Michaelis-Menten constant for 1,3-butadiene, related to the average concentration in the organism of the animals, was Kmapp = 1.17±0.37 (Μmol/l of tissue) and the corresponding atmospheric concentration at steady state was 560 ppm. The inhibition constant of styrene was found to be Ki = 0.23±0.30 (Μmol/l of tissue). The maximal metabolic rate for 1,3-butadiene was 230±10 (Μ/kg/h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolt H, Filser J, Störmer F (1984) Inhalation pharmacokinetics based on gas uptake studies. V. Comparative pharmacokinetics of ehtylene and 1,3-butadiene in rats. Arch Toxicol 55: 213–218

    Article  PubMed  Google Scholar 

  • Conti B, Maltoni C, Perino G, Ciliberti A (1988) Long-term cancerogenicity bioassays on styrene administered by inhalation, ingestion and injection and styrene oxide administered by ingestion in Sprague-Dawley rats and para-methylstyrene administered by ingestion in Sprague-Dawley rats and Swiss mice. Ann NY Acad Sci 534: 203–234

    PubMed  Google Scholar 

  • Csanády G, Laib R (1992) Metabolic transformation of halogenated and other alkenes — a theoretical chemical approach. t J Quant Biol (submitted)

  • Filser J (1992) The closed chamber technique — uptake, endogenous production, excretion, steady-state kinetics and rates of metabolism of gases and vapours. Arch Toxicol 66: 1–10

    PubMed  Google Scholar 

  • Filser J, Bolt H (1979) Pharmacokinetics of halogenated ethylenes in rats. Arch Toxicol 42: 123–136

    Article  PubMed  Google Scholar 

  • Filser J, Bolt H (1984) Inhalation pharmacokinetics based on gas uptake studies. VI Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats. Arch Toxicol 55: 219–223

    Article  PubMed  Google Scholar 

  • Filser J, Kessler W, Koch R, Denk B, Summer K (1988) Kompetitive Hemmung der Bildung des n-Hexan-Metaboliten 2,5-Hexandion durch Toluol: Messung von Pyrrolen im Urine von Ratten. Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin e.V., 28. Jahrestagung, Innsbruck, Gentner Verlag Stuttgart

    Google Scholar 

  • Garrison J, Bruice T (1989) Intermediates in the epoxidation of alkenes by cytochrome P-450 models. J Am Chem Soc 111: 191–198

    Article  Google Scholar 

  • Gesundheitsschädliche Arbeitsstoffe (1987) MAK-Begründung “Stymi”. In: Gesundheitsschädliche Arbeitsstoffe: Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten, VCH-Verlaggesellschaft, Weinheim

    Google Scholar 

  • Guengerich F (1991) Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4: 391–407

    Article  PubMed  Google Scholar 

  • Guengerich F, Liebler D (1985) Enzymatic activation of chemicals to toxic metabolites. CRC Crit Rev Toxicol 14: 259–307

    Google Scholar 

  • Hartung J, Elpelt B, Klösner K (1989) Statistik. R. Oldenburg Verlag, München-Wien

    Google Scholar 

  • Kessler W, Denk B, Filser J (1989) Species-specific inhalation pharmacokinetics of 2-nitropropane, methyl-ethyl-ketone and n-hexane. In: Travis C (ed) Biologically-based methods for cancer risk assessment. Plenum Publishing Corporation, New York, pp 123–139

    Google Scholar 

  • Kreiling R, Laib R, Filser J, Bolt H (1986) Species differences in butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics. Arch Toxicol 58: 235–238

    Article  PubMed  Google Scholar 

  • Levin L (1990) Functional diversity of hepatic cytochromes P-450. Drug Metab Dispos 18: 824–830

    PubMed  Google Scholar 

  • Löf A, Gullstrand E, Lundgren E, Byfält Nordquist M (1984) Occurrence of styrene-7,8-oxide and styrene glycol in mouse after the administration of styrene. Scand J Work Environ Health 10: 179–187

    PubMed  Google Scholar 

  • Maltoni C, Ciliberti A, Di Maio V (1977) Carcinogenicity bioassays on rats of acrylonitrile administered by inhalation and by ingestion. Med Lavoro 68: 401–411

    PubMed  Google Scholar 

  • Matanoski G, Santos-Burgoa C, Zeger S, Schwartz L (1989) Epidemiologic data related to health effects of 1,3-butadiene. In: Mohr U (ed) Assessment of inhalation hazards. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hongkong, pp 201–214

    Google Scholar 

  • Melnick R, Huff J, Miller R (1989) Toxicology and carcinogenicity of 1,3-butadiene. In: Mohr U (ed) Assessment of inhalation hazards. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hongkong, pp 177–188

    Google Scholar 

  • Normandeau J, Chakarabarti S, Brodeur J (1984) Influence of simultaneous exposure to acrylonitrile and styrene on the toxicity and metabolism of styrene in rats. Toxicol Appl Pharmacol 75: 346–349

    Article  PubMed  Google Scholar 

  • Owen P, Glaister J, Gaunt I, Pullinger D (1987) Inhalation toxicity studies with 1,3-butadiene. 3. Two year toxicity/carcinogenicity study in rats. Am Ind Hyg Assoc J 48: 407–413

    PubMed  Google Scholar 

  • Ramsey J, Andersen M (1984) A physiologically based description of the inhalation pharmacokinetics of inhaled styrene in human volunteers. Toxicol Appl Pharmacol 73: 159–175

    Article  PubMed  Google Scholar 

  • Roberts A, Lacy S, Pilon D, Turner M, Rickert D (1988) Metabolism of acrylonitrile to 2-cyanoethylene oxide in F-344 rat liver microsomes, lung microsomes and lung cells. Drug Metab Dispos 17: 481–486

    Google Scholar 

  • Schwegler U (1991) Pharmakokinetic von Styrol bei Ratte und Maus. GSF-Bericht 15/91. GSF — Forschungszentrum für Umwelt und Gesundheit, Neuherberg

  • Schwegler U, Jiang X, Kessler W, Johanson G, Filser J (1990) Pharmakokinetic von Styrol by Ratte und Maus und Bestimmung von Styrol-7,8-oxid im Blut von Ratten. Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin e. V., 28. Jahrestagung, Genter Verlag Stuttgart

    Google Scholar 

  • Stryer L (1979) Biochemie. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH., Braunschweig

    Google Scholar 

  • Suzuki T, Shimbo S, Nishitani S (1974) Muscular atrophy due to glue sniffing. Int Arch Arbeitsmed 33: 115–123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Central Research Institute of Chemistry, Hungarian Academy of Sciences, Budapest, Hungary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laib, R.J., Tucholski, M., Filser, J.G. et al. Pharmacokinetic interaction between 1,3-butadiene and styrene in Sprague-Dawley rats. Arch Toxicol 66, 310–314 (1992). https://doi.org/10.1007/BF01973624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01973624

Key words

Navigation