Skip to main content
Log in

K-current fluctuations in inward-rectifying channels of frog skeletal muscle

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

K currents and K-current fluctuations were recorded in inwardly rectifying K channels of frog skeletal muscle under voltage-clamp conditions. External application of 0.2 to 10mm Cs reduces the inward mean K current but produces a distinct increase of the spectral density of K-current fluctuations. The additional fluctuations arise from the random blocking by Cs ions. From the variance of current fluctuations, the steady-state current and the probability of the open unblocked channel an effective single-channel conductanceγ * was calculated.γ * strongly depends on the external Cs concentration (7.8 pS at 0.2mm Cs, 2.1 pS at 10mm Cs). This dependence is interpreted in terms of a two-step blocking process: (1) a fast exchange of Cs ions between the external solution and a first binding site inside the channel which leads to the Cs-modulated effective single-channel conductance, and (2) a slow Cs binding to a second site deeper in the channel which produces the observed current fluctuations. With this hypothesis we obtained a real single-channel conductance of γ≈10 pS and a real density ofn≈4 inwardly rectifying channels per μm2 of muscle surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J., French, R. J. 1978. Blocking of the squid axon K channel by external Cs ions.J. Physiol. (London) 276:13–25

    Google Scholar 

  • Adrian, R. H. 1969. Rectification in muscle membrane.Proc. Biophys. Mol. Biol. 19:339–369

    Google Scholar 

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970a. Voltage clamp experiments in striated muscle fibres.J. Physiol. (London) 208:607–644

    Google Scholar 

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970b. Slow changes in potassium permeability in skeletal muscle.J. Physiol. (London) 208:645–668

    Google Scholar 

  • Almers, W. 1972a. Potassium conductance changes in skeletal muscle and the K concentration in the transverse tubules.J. Physiol. (London) 225:33–56

    Google Scholar 

  • Almers, W. 1972b. The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle.J. Physiol. (London) 225:57–83

    Google Scholar 

  • Armstrong, C. M. 1975. Evidence for ionic pores in excitable membranes.Biophys. J. 15:932–933

    PubMed  Google Scholar 

  • Ciani, S., Hagiwara, S., Miyazaki, S. 1977. A model for Cs blocking of the potassium conductance in anomalous rectification.Biophys. J. 17:46a

    Google Scholar 

  • Ciani, S., Krasne, S., Hagiwara, S. 1980. A model for the effect of potential and external K+ concentration on the Cs+ blocking of inward rectification.Biophys. J. 30:199–204

    PubMed  Google Scholar 

  • Conti, F., Hille, B., Neumcke, B., Nonner, W., Stämpfli, R. 1976. Measurement of the conductance of the sodium channel from current fluctuations at the node ofRanvier.J. Physiol. (London) 262:699–727

    Google Scholar 

  • Conti, F., Neumcke, B., Nonner, W., Stämpfli, R. 1980. Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres.J. Physiol. (London) 308:217–239

    Google Scholar 

  • Coronado, R., Miller, Ch. 1979. Voltage-dependent Cs blockade of a cation channel from fragmented sarcoplasmatic reticulum.Nature (London) 280:807–810

    Google Scholar 

  • Gay, L. A., Stanfield, P. R. 1977. Cs+ causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres.Nature (London) 267:169–170

    Google Scholar 

  • Hagiwara, S., Miyazaki, S., Rosenthal, N. P. 1976. Potassium current and the effect of Cs on this current during anomalous rectification in the egg cell membranes of a starfish.J. Gen. Physiol. 67:621–638

    PubMed  Google Scholar 

  • Hagiwara, S., Takahashi, K. 1974. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell.J. Membrane Biol. 18:61–80

    Article  Google Scholar 

  • Hestrin, S. 1980. Voltage Clamp Study of Inward Rectification of Frog Muscle Fibers. Ph. D. Thesis. University of California, Los Angeles

    Google Scholar 

  • Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes; A series of Advances. G. Eisenman, editor. Vol. 3, pp. 255–323. Marcel Dekker, Inc. New York

    Google Scholar 

  • Hille, B., Campbell, D. T. 1976. An improved Vaseline gap voltage clamp for skeletal muscle fibers.J. Gen. Physiol. 67:265–293

    PubMed  Google Scholar 

  • Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores.J. Gen. Physiol. 72:409–442

    PubMed  Google Scholar 

  • Hodgkin, A. L., Keynes, R. D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. (London) 128:61–88

    Google Scholar 

  • Horowicz, P., Gage, P. W., Eisenberg, R. S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.J. Gen. Physiol. 51:193s-203s

    PubMed  Google Scholar 

  • Katz, B. 1949. Les constantes électriques de la membrane du muscle.Arch. Sci. Physiol. 2:285–299

    Google Scholar 

  • Miyazaki, S., Ohmori, H., Sasaki, S. 1975. Potassium rectifications of the starfish oocyte membrane and their changes during oocyte maturation.J. Physiol. (London) 246:55–78

    Google Scholar 

  • Nakamura, Y., Nakajima, S., Grundfest, H. 1965. Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques ofElectrophorus electricus, L.J. Gen. Physiol. 49:321–349

    Article  Google Scholar 

  • Neumcke, B., Schwarz, W., Stämpfli, R. 1980. Differences between K channels in motor and sensory nerve fibres of the frog as revealed by fluctuation analysis.Pfluegers Arch. 387:9–16

    Article  Google Scholar 

  • Noble, D., Tsien, R. W. 1968. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres.J. Physiol. (London) 195:185–214

    Google Scholar 

  • Nonner, W. 1969. A new voltage clamp method forRanvier nodes.Pfluegers Arch. 309:176–192

    Article  Google Scholar 

  • Ohmori, H. 1978. Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes.J. Physiol. (London) 281:77–99

    Google Scholar 

  • Ohmori H. 1980. Dual effects of K ions upon the inactivation of the anomalous rectifier of the tunicate egg cell membrane.J. Membrane Biol. 53:143–156

    Article  Google Scholar 

  • Palade, P. T., Neumcke, B., Schwarz, W. 1980. Cs-induced K-currents fluctuations in anomalous-rectifying channels of frog skeletal muscle.Biophys. Struct. Mechanism 6:138 (Suppl.)

    Article  Google Scholar 

  • Sanchez, J. A., Stefani, E. 1978. Inward calcium current in twitch muscle fibres of the frog.J. Physiol. (London) 283:197–209

    Google Scholar 

  • Sigworth, F. J. 1977. Sodium channels in nerve apparently have two conductance states.Nature (London) 270:265–267

    Google Scholar 

  • Standen, N. B., Stanfield, P. R. 1980. Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres.J. Physiol. (London) 304:415–435

    Google Scholar 

  • Takahshi, K., Miyazaki, S., Kidakoro, Y. 1971. Development of excitability in embryonic muscle cell membranes in certain tunicates.Science 171:415–418

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, W., Neumcke, B. & Palade, P.T. K-current fluctuations in inward-rectifying channels of frog skeletal muscle. J. Membrain Biol. 63, 85–92 (1981). https://doi.org/10.1007/BF01969449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01969449

Key words

Navigation