Skip to main content
Log in

The adaptive significance of sexuality

  • Published:
Experientia Aims and scope Submit manuscript

Summary

A theory of sexuality and polymorphism is proposed in which diversity at the molecular level is the adaptive response of multicellular organisms to the challenge of microparasites that have smaller genomes, shorter generation times and which can evolve more quickly than their hosts. The theory has implications for genetically homogenized crops and other cultivated plants as well as for immunology. A different function of sexuality is proposed for microorganisms that reproduce both asexually and sexually. Several possible experimental tests are discussed. Mathematical modelling techniques are outlined qualitatively and compared with game-theoretical methods which may be interpreted as simplifications of population dynamic and genetic equilibria. Some results about equilibria, stability and extinction in the population dynamics of polymorphic host-parasite populations are referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., Molecular Biology of the Cell. Garland, New York, London 1983.

    Google Scholar 

  2. Anderson, R.M., The persistence of direct life cycle infectious diseases within populations of hosts, in: Some Mathematical Questions in Biology. Lectures on Mathematics in the Life Sciences, vol. 12, pp. 1–67. Ed. S.A. Levin. Am. Math. Soc., Providence, R.I. 1979.

    Google Scholar 

  3. Anderson, R.M., and May, R.M., Population biology of infectious diseases I. Nature280 (1979) 361–367.

    Google Scholar 

  4. Anderson, R.M., and May, R.M., The population dynamics of micro-parasites and their invertebrate hosts. Phil. Trans. R. Soc. London (B)291 (1981) 451–524.

    Google Scholar 

  5. Anderson, R.M., and May R.M., Population Biology of Infectious Diseases. Dahlem Workshop, Berlin 1982. Springer-Verlag, Berlin, Heidelberg, New York 1982.

    Google Scholar 

  6. Apple, J.L., in: Plant Disease, vol. 1, pp. 79–101. Eds J.G. Horsfall and E.B. Cowling. Academic Press, New York 1977.

    Google Scholar 

  7. Arber, W., and Dussoix, D., Host specificity of DNA produced byEscherichia coli I. Host controlled modification of bacteriophage II. Control over acceptance of DNA from infecting phage. J. molec. Biol.5 (1962) 18–49.

    Google Scholar 

  8. Bell, G., The Masterpiece of Nature: The Genetics and Evolution of Sexuality. University of California Press, Berkeley and Los Angeles 1982.

    Google Scholar 

  9. Bloom, B.R., Games parasites play: how parasites evade immune surveillance. Nature279 (1979) 21–26.

    Google Scholar 

  10. Bremermann, H.J., Theory of spontaneous cell fusion. Sexuality in Cell Populations as an Evolutionary Stable Strategy. Applications to Immunology and Cancer. J. theor. Biol.76 (1979) 311–334.

    Google Scholar 

  11. Bremermann, H.J., Sex and Polymorphism and Strategies in Host-Pathogen Interactions. J. theor. Biol.87 (1980) 641–702.

    Google Scholar 

  12. Bremermann, H.J., Game-theoretical Model of Parasite Virulence. J. theor. Biol.100 (1983) 255–274.

    Google Scholar 

  13. Bremermann, H.J., Parasites at the origin of life. J. math. Biol.16 (1983b) 165–180.

    Google Scholar 

  14. Bremermann, H.J., and Pickering, J., A Game-Theoretical Model of Parasite Virulence. J. theor. Biol.100 (1983) 411–426.

    Google Scholar 

  15. Bremermann, H.J., and Thieme, H., A competitive exclusion principle for pathogen virulence. In press (1985).

  16. Bremermann, H.J., and Fiedler, B., On the stability of polymorphic host-pathogen populations. J. theor. Biol., in press (1985).

  17. Browning, J.A., Relevance of knowledge about natural ecosystems to development of pest management programs for ecosystems, Am. phytopath. Soc. Proc.1 (1974) 191–199.

    Google Scholar 

  18. Browning, J.A., Genetic protective mechanisms of plant-pathogen interactions: their coevolution and use in breeding for resistance, in: Biology and Breeding for Resistance to Arthropods and Pathogens in Agricultural Plants, pp. 52–75. Ed. M.K. Harris. Texas A & M Press, College Station 1980.

    Google Scholar 

  19. Chanock, R.M., and Lerner, R.A., Modern Approaches to Vaccines. Molecular and Chemical Basis of Virus Virulence and Immunogenicity. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York 1984.

    Google Scholar 

  20. Clarke, B.C., The evolution of genetic diversity. Proc. R. Soc. London (B)205 (1979) 453–474.

    Google Scholar 

  21. Cook, L.M., The problem, in: Evolutionary Dynamics of Genetic Diversity. Ed. G.S. Mani, Springer-Verlag, Berlin, Heidelberg 1984.

    Google Scholar 

  22. Craik, C.S., Rutter, W.J., and Fletterick, R., Splice Junctions: Associated with Variation in Protein Structure. Science220 (1983) 1125–1129.

    Google Scholar 

  23. Cuellar, O., Animal parthenogenesis. Science197 (1977) 837–843.

    Google Scholar 

  24. DeNettancourt, D., Incompatability in Angiosperms. Springer-Verlag, Berlin, Heidelberg 1977.

    Google Scholar 

  25. Dinoor, A., The role of the alternate host in amplifying the pathogenic variability of oat crown rust. Res. Rep. Sci. Agric. Hebrew Univ. Jerusalem1 (1974) 734–735.

    Google Scholar 

  26. Felsenstein, J., The evolutionary advantage of recombination. Genetics78 (1974) 737–756.

    Google Scholar 

  27. Fisher, R.A., The Genetical Theory of Natural Selection, 2nd edn. Clarendon Press, Oxford. Revised. Dover, New York 1930.

    Google Scholar 

  28. Flor, H.H., Host-parasite interaction in flax rust—its genetics and other implications. Phytopathology45 (1955) 680–685.

    Google Scholar 

  29. Flor, H.H., The complementary genic systems in flax and flax rust. Advances in Genetics, pp. 29–54. Academic Press, New York 1956.

    Google Scholar 

  30. Fraenkel, G.S., and Gunn, D.L., The Orientation of Animals. Dover, New York 1961.

    Google Scholar 

  31. Gracen, V., Role of genetics in etiological phytopathology, A. Rev. Phytopath.20 (1983) 219–233.

    Google Scholar 

  32. Haas, W., Die Anheftung (Fixation) der Cercarie vonSchistosoma mansoni. Z. ParasitKde49 (1976) 63.

    Google Scholar 

  33. Hamilton, W.D., Sex versus non-sex versus parasite. Oikos35 (1980) 282–290.

    Google Scholar 

  34. Hamilton, W.D., Pathogens as causes of genetics diversity in their host populations, in: Population Biology of Infectious Diseases, pp. 269–296. Eds R.M. Anderson and R.M. May. Springer-Verlag, New York 1982.

    Google Scholar 

  35. Hoekstra, R.F., and Van der Hoeven, N., The evolution of sexual reproduction. Some population genetic models. Nieuw Archf. Wisk.4 (1984) 5–24.

    Google Scholar 

  36. Jaenike, J., An hypothesis to account for the maintenance of sex within populations. Evol. Theory3 (1978) 191–194.

    Google Scholar 

  37. Jayakar, S.D., A mathematical model for interaction of frequencies in a parasite and its host. Theor. Pop. Biol.1 (1970) 140–164.

    Google Scholar 

  38. Kaplan, M.M., and Webster, R.G., The epidemiology of influenza. Sci. Am.237 (Dec. 1977) 88–106.

    Google Scholar 

  39. Kendal, A.P., Cox, N.J., Nakajima, S., Nakajima, K., Raymond, L., Caton, A., Brownlee, G., and Webster, G., Structures in Influenza A/USSR/90/77—Haemagglutinin Associated with Epidimiologic and Antigenic changes, in: Modern approaches to vaccines, pp. 151–157. Eds R.M. Chanock and R.A. Lerner. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1984.

    Google Scholar 

  40. Kimura, M., Model of effectively neutral mutations in which selective constraint is incorporated. Proc. natn. Acad. Sci. USA76 (1979) 3440–3444.

    Google Scholar 

  41. Kimura, M., The neutral theory of molecular evolution, in: Evolution of Genes and Proteins. Eds M. Nei and R.K. Koehn. Sinauer Associates, Sunderland, Ma. 1983.

    Google Scholar 

  42. Kimura, M., and Ohta, T., Theoretical Aspects of population Genetics. Princeton University Press, Princeton 1971.

    Google Scholar 

  43. Klinkowski, O., Catastrophic Plant Diseases. A. Rev. Phytopath.8 (1970) 37–60.

    Google Scholar 

  44. Klinman, N.R., Sigal, N.H., Metcalf, E.S. Gearhart, P.J., and Pierce, S.K., Cold Spring Harbor Symp. Quant. Biol.41 (1977) 165.

    Google Scholar 

  45. Knossow, M., Daniels, R.S., Douglas, A.R., Skehel, J.J., and Wiley, D.C., Three-dimensional structure of an antigenetic mutant of the influenza virus haemagglutinin. Nature311 (1984) 678–680.

    Google Scholar 

  46. Levin, B.R., Stewart, B.R., and Chao, L., Resource limited growth, competition and predation: A model and some experimental studies with bacteria and bacteriophage. Am. Nat.111 (1977) 3–24.

    Google Scholar 

  47. Levin, B.R., Allison, A.C., Bremermann, H.J., Cavalli-Sforza, L.L., Clarke, B.C., Frentzel-Beyme, R., Hamilton, W.D., Levin, S.A., May, R.M., and Thieme, H.R., Evolution of parasites and hosts. Group Report, in: Population Biology of Infectious Diseases, pp. 213–243. Ed. R.M. May. Springer Verlag, New York 1982.

    Google Scholar 

  48. Levin, S.A., Population dynamic models in heterogeneous environments. A. Rev. Ecol. Syst.7 (1976) 287–310.

    Google Scholar 

  49. Levin, S.A., Some approaches to the Modeling of Coevolutionary phenomena, in: Coevolution. Ed. M. Nitecki. University of Chicago Press, Chicago 1983.

    Google Scholar 

  50. Levin, S.A., and Udovic, J.D., A mathematical model of coevolutionary populations. Am. Nat.111 (1977) 657–675.

    Google Scholar 

  51. Lewin, B., Gene Expression, vol. 3: Plasmids and Phages. Wiley, New York 1977.

    Google Scholar 

  52. Lewin, B., Genes. Wiley, New York 1983.

    Google Scholar 

  53. Lewontin, R.C., The Genetic Basis of Evolutionary Change. Columbia University Press, New York 1974.

    Google Scholar 

  54. Lucas, G.B., The war against blue mold. Science210 (1980) 147–153.

    Google Scholar 

  55. Mani, G.S., Evolutionary dynamics of genetic diversity, vol. 53. Springer-Verlag, Berlin, Heidelberg. Lecture Notes in Biomathematics (1984).

    Google Scholar 

  56. May, R.M., and Anderson, R.M., Population biology of infectious diseases II. Nature280 (1979) 455–461.

    Google Scholar 

  57. May, R.M., and Anderson, R.M., Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. London (B):219 (1983a) 281–313.

    Google Scholar 

  58. May, R.M., and Anderson, R.M., Parasite-host coevolution. in: Coevolution. Ed. M. Slatkin. Sinauer Associates, Sunderland, Massachusetts 1983b.

    Google Scholar 

  59. Maynard Smith, J., The Evolution of Sex. Cambridge University Press, Cambridge, Mass. 1978.

    Google Scholar 

  60. Maynard Smith, J., Evolution and the Theory of Games. Cambridge University Press, Cambridge 1982.

    Google Scholar 

  61. Mode, C.J., A mathematical model for the coevolution of obligate parasites and their hosts. Evolution12 (1958) 158–165.

    Google Scholar 

  62. Mode, C.J., A model of a host-pathogen system with particular reference to the rusts of cereals. Biometrical Genetics, pp. 84–96. Pergamon Press, New York 1960.

    Google Scholar 

  63. Muller, H.J., Some genetic aspects of sex. Am. Nat.66 (1932) 118–138.

    Google Scholar 

  64. National Academy of Sciences Committee Report, Genetic Vulnerability of Major Crops. Printing and Publishing Office. National Academy of Sciences, Washington, D.C. 1972.

  65. Nei, N., Genetic polymorphism and neomutationism, in: Evolutionary Dynamics in Genetic Diversity. Biomathematics Lecture Notes, vol. 53. Ed. G.S. Mani. Springer-Verlag, Berlin, Heidelberg, New York 1984.

    Google Scholar 

  66. Nevo, D., Beiles, A., and Ben-Shlomo, R., The evolutionary significance of genetic diversity: Ecological, demographic, and life history correlates, in: Evolutionary Dynamics of Genetic Diversity. Ed. G.S. Mani. Springer-Verlag, Berlin, Heidelberg 1984.

    Google Scholar 

  67. Novick, R., and Hoppenstaedt, F.C., On plasmid incompatibility. Plasmid1 (1978) 421.

    Google Scholar 

  68. Panopoulos, N.J., Walton, J.D., and Willis, D.K., Genetic and biochemical basis of virulence in plant pathogens, in: Genes Involved in Microbe-Plant Interactions. Eds D.P.S. Verma and T.H. Hohn. Springer-Verlag, Vienna, New York 1984.

    Google Scholar 

  69. Perelson, A.S., Mirmirani, M., and Oster, G.F., Optimal strategies in immunology I. B-cell differentiation and proliferation. J. math. Biol.3 (1976) 325–367.

    Google Scholar 

  70. Perelson, A.S., Mirmirani, M., and Oster, G.F., Optimal strategies in immunology II. B-memory cell production. J. math. Biol.5 (1978) 213–256.

    Google Scholar 

  71. Perelson, A.S., and Oster, G.F., Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-non-self discrimination. J. theor. Biol.81 (1979) 645–670.

    Google Scholar 

  72. Person, C., Genetic polymorphism in parasitic systems. Nature212 (1966) 266–267.

    Google Scholar 

  73. Pimentel, D., Genetic diversity and stability in parasite-host systems. Manuscript (1982).

  74. Rice, W.R., Parent-offspring pathogen transmission: a selective agent promoting sexual reproduction. Am. Nat.121 (1983) 1317–1320.

    Google Scholar 

  75. Scheffer, R.P., and Livingston, R.S., Host-selective toxins and their role in plant diseases. Science223 (1984) 17–21.

    Google Scholar 

  76. Schimke, R.T., (ed.), Gene Amplification. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1982.

    Google Scholar 

  77. Shields, W.M., Philopatry, Inbreeding, and the Evolution of Sex. State University of New York Press, Albany, New York 1982.

    Google Scholar 

  78. Solbrig, O.T., Jain, S., Johnson, G.B., and Raven, P.H. (eds), Topics in Plant Population Biology. Columbia University Press, New York 1979.

    Google Scholar 

  79. Stearns, S.C., Life-history tactics: a review of the ideas. Q. Rev. Biol.51 (1976) 3–47.

    Google Scholar 

  80. Stent, G.S., and Calendar, R., Molecular Genetics: An Introductory Narrative. W.H. Freeman, San Francisco 1978.

    Google Scholar 

  81. Stewart, F.M., and Levin, B.R., The Population Biology of bacterial plasmids: A priori conditions for the existence of conjugationally transmitted factors. Genetics87 (1977) 209–228.

    Google Scholar 

  82. Strobel, G.A., Basis of the resistance of sugarcane to eyespot disease. Proc. natn. Acad. Sci.70 (1973) 1693–1696.

    Google Scholar 

  83. Strobel, G.A., A mechanism of disease resistance in plants. Sci. Am.232 (1975) 80–88.

    Google Scholar 

  84. Van Alfen, N.K., Jaynes, R.A., Anagnostakis, S.L., and Day, P.R., Chestnut blight: Biological control by transmissible hypovirulence inEndothia parasitica. Science189 (1975) 890–891.

    Google Scholar 

  85. Van der Hoeven, N., A mathematical model for the coexistence of plasmids in a bacterial population. J. theor. Biol., to appear (1984).

  86. Van der Plank, J.E., Principles of Plant Infection. Academic Press, New York 1975.

    Google Scholar 

  87. Verma, D.P.S., and Hohn, Th. (eds), Genes involved in Microbe-Plant Interactions. Springer-Verlag, Vienna, New York 1984.

    Google Scholar 

  88. Watson, J.D., Molecular Biology of the Gene, 3rd. W.A. Benjamin, Menlo Park, California 1976.

    Google Scholar 

  89. Wiley, D.C., Wilson, I.A., and Skehel, J.J., Structural identification of the antibody-binding sites of Hong Kong Influenza haemagglutinin and their involvement in antigenic variation. Nature289 (1981) 373.

    Google Scholar 

  90. Williams, G.C., Sex and Evolution. Princeton University Press, Princeton, N.J. 1975.

    Google Scholar 

  91. Wilson, E.O., Sociobiology: The New Synthesis. Belknap Press of Harvard University Press, Cambridge, Mass. 1975.

    Google Scholar 

  92. Wilson, E.O., On Human Nature. Harvard University Press, Cambridge, Mass. 1978.

    Google Scholar 

  93. Yu, P., Some host-parasite genetic interaction models. Theor. Pop. Biol.3 (1972) 347–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremermann, H.J. The adaptive significance of sexuality. Experientia 41, 1245–1254 (1985). https://doi.org/10.1007/BF01952067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952067

Key words

Navigation