Skip to main content
Log in

Developmental exposure to organic lead causes permanent hippocampal damage in Fischer-344 rats

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The long-term consequences of neonatal exposure to triethyl lead, the putative neurotoxic metabolite of the anti-knock gasoline additive tetraethyl lead, were examined with respect to central nervous system (CNS) development. We presently report a series of studies in which exposure of neonatal rats to organic lead produces profound CNS damage in adulthood as indicated by dose-dependent, persistent behavioral hyperreactivity as well as dose-dependent, preferential, and permanent damage to the hippocampus. General morphological parameters of brain development were not altered. Pharmacological probes of neurotransmitter system integrity suggested a functional and dose-dependent relationship between this behavioral hyperreactivity and hippocampal damage via cholinergic, but not dopaminergic, pathways. Furthermore, these alterations were not accompanied by long-term alterations in motor activity and were not attributable to the presence of lead in adult neural tissue. Finally, these behavioral, anatomical, and pharmacological indices of developmental exposure to organic lead were dissociable from any effects of early undernutrition. These data collectively indicate that organolead compounds may pose a potent neurotoxic threat to the developing CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kehoe, R. A., J.A.M.A.85 (1925) 108.

    Article  CAS  Google Scholar 

  2. U.S. Environmental Protection Agency, Air Quality Criteria for Lead, Environmental Criteria and Assessment Office, Research Triangle Park, North Carolina, 1986.

  3. U.S. Department of Energy, Energy Information Administration, Mon. Energy Rev. Jan. (1989) 35–54.

  4. U.S. Department of Interior, Bureau of Mines, Mineral Yearbook-19871 (1989) 541.

  5. Craig, P. J., and Rapsomanikis, S., Environ. Sci. Technol.19 (1985) 726.

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt, U., and Huber, F., Nature259 (1976) 157.

    Article  CAS  PubMed  Google Scholar 

  7. Stevens C. D., Feldhake, C. J., and Kehoe, R. A., J. Pharmac. exp. Ther.128 (1960) 90.

    CAS  Google Scholar 

  8. Hayakawa, K., Jap. J. Hyg.26 (1971) 526.

    Article  Google Scholar 

  9. Nielsen, T., Jensen, K. A., and Grandjean, P., Nature274 (1978) 602.

    Article  CAS  PubMed  Google Scholar 

  10. Jensen, A. A., in: Biological Effects of Organolead Compounds, pp. 97–115. Ed. P. Grandjean. CRC Press, Boca Raton, Florida 1984.

    Google Scholar 

  11. Grandjean, P., in: Biological Effects of Organolead Compounds, pp. 227–241. Ed. P. Grandjean. CRC Press, Boca Raton, Florida 1984.

    Google Scholar 

  12. Hunter, A. G. W., Thompson, D., and Evans, J. A., Teratology20 (1979) 75.

    Article  CAS  PubMed  Google Scholar 

  13. McClain, R. M., and Becker, B. A., Toxic. appl. Pharmac.21 (1972) 265.

    Article  CAS  Google Scholar 

  14. Keenlyside, R. A., in: Biological Effects of Organolead Compounds. pp. 219–225. Ed. P. Grandjean. CRC Press, Boca Raton, Florida 1984.

    Google Scholar 

  15. Valpey, R., Sumi, S. M., Copass, M. K., and Goble, G. J., Neurology28 (1978) 507.

    Article  CAS  PubMed  Google Scholar 

  16. Robinson, R. O., J.A.M.A.240 (1978) 1373.

    Article  CAS  PubMed  Google Scholar 

  17. Cremer, J. E., Br. J. ind. Med.16 (1959) 191.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cremer, J. E., and Calloway, S., Br. J. ind. Med.18 (1961) 277.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Booze, R. M., and Mactutus, C. F., Teratology33 (1986) 99c.

    Google Scholar 

  20. Mactutus, C. F., and Booze, R. M., Teratology31 (1985) 11B.

    Google Scholar 

  21. Winer, B. J., Statistical Principles in Experimental Design. McGraw-Hill, New York 1971.

    Google Scholar 

  22. Mactutus, C. F., and Fechter, L. D., science223 (1984) 409.

    Article  CAS  PubMed  Google Scholar 

  23. Gray, J. A., and McNaughton, N., Neurosci. Biobehav. Rev.7 (1983) 119.

    Article  CAS  PubMed  Google Scholar 

  24. Glowinski, J., and Iverson, L. L., J. Neurochem.13 (1966) 655.

    Article  CAS  PubMed  Google Scholar 

  25. Swanson, L. W., in: Neurobiology of the Hippocampus, pp. 3–19. Ed. W. Seifert. Academic Press, London 1983.

    Google Scholar 

  26. Springer, J. E., and Isaacson, R. L., Brain Res.252 (1982) 185.

    Article  CAS  PubMed  Google Scholar 

  27. Butcher, L. L., and Woolf, N. J., in: Handbook of Chemical Neuroanatomy, vol. 3, Classical Transmitters and Transmitter Receptors in the CNS, Part II, pp. 1–50. Eds A. Bjorklund, T. Hokfelt and M. J. Kuhar. Elsevier, Amsterdam 1984.

    Google Scholar 

  28. De Jonghe, W. R. A., and Adams, F. C., Atmos. Environ.14 (1980) 1177.

    Article  PubMed  Google Scholar 

  29. Nielsen, T., Egsgaard, H., Larsen, E., and Schroll, G., Analyt. Chim. Acta124 (1981) 1.

    Article  CAS  Google Scholar 

  30. Campbell, J. B., Wooley, D. E., Vijayan, V. K., and Overmann, S. R., Devl. Brain Res.3 (1982) 595.

    Article  CAS  Google Scholar 

  31. Alfano, D. P., LeBoutillier, J. C., and Petit, T. L., Exp. Neurol.75 (1982) 308).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booze, R.M., Mactutus, C.F. Developmental exposure to organic lead causes permanent hippocampal damage in Fischer-344 rats. Experientia 46, 292–297 (1990). https://doi.org/10.1007/BF01951770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951770

Key words

Navigation