Skip to main content
Log in

Aromatic chemicals through anaerobic microbial conversion of lignin monomers

  • Conversion of Biomass to Fuel and Chemical Raw Material
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Large efforts are directed towards production of ethanol from cellulosic biomass in order to reduce our dependence on petroleum based ethylene. No satisfactory process exists to date, however, which would make the aromatic molecules present in wood available to economic exploitation. A combination of physicochemical pretreatment of lignocellulose and selective microbial conversion of the mixture of aromatic monomers into a few phenolic products is outlined. Anaerobic microbial communities are employed since they offer thermodynamic and physiological characteristics necessary for efficient conversion. Under anaerobic conditions most of the carbon and energy initially present in the substrate can be recovered as useful products; oxidative losses as CO2 and H2O are minimized. The 3,4-disubstituted aromatic lignin monomers are converted to catechol while 3,4,5-trisubstituted monomers are mineralized to CH4 and CO2. Further studies are directed towards an understanding of the physiological functions of the populations participating in the conversion process, the reason for catechol recalcitrance and the tolerance of the community towards phenolic endproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Author for correspondence and reprint requests.

  2. Union pétrolière suisse. Rapport annuel, Zürich 1980, 52 pp.

  3. R.S. Wishart, Industrial energy in transition: a petrochemical perspective. Science199, 614–618 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. P. Ander and K.-E. Eriksson, Lignin degradation and utilization by microorganisms. Prog. ind. Microbiol.14, 1–58 (1978).

    CAS  Google Scholar 

  5. R.B. Cain, The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms, in: Lignin biodegradation: Microbiology, Chemistry and Potential Applications, vol. 1, p. 21–60. Ed. T.K. Kirk, T. Higuchi, and H. Chang. CRC Press, Boca Raton, FL 1980.

    Google Scholar 

  6. T. Fukuzumi, Microbial metabolism of lignin-related aromatics, in: Lignin Biodegradation: Microbiology, Chemistry and Potential Applications, vol. 2, p. 73–94. Ed. T.K. Kirk, T. Higuchi and H. Chang. CRC Press, Boca Raton, FL 1980.

    Google Scholar 

  7. H. Kawakami, Degradation of lignin-related aromatics and lignins by several pseudomonads, in: Lignin Biodegradation: Microbiology, Chemistry and Potential Applications, vol. 2, p. 103–105. Ed. T.K. Kirk, T. Higuchi and H. Chang. CRC Press, Boca Raton, FL 1980.

    Google Scholar 

  8. M. Kuwahara, Metabolism of lignin-related compounds by bacteria, in: Lignin Biodegradation: Microbiology, Chemistry and Potential Applications, vol. 2, p. 127–146. Ed. T.K. Kirk, T. Higuchi and H. Chang. CRC Press, Boca Raton, FL 1980.

    Google Scholar 

  9. S. Dagley, New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature188, 560–566 (1960).

    Article  CAS  PubMed  Google Scholar 

  10. R.Y. Stanier and L.N. Ornston, The β-ketoadipate pathway. Adv. microbial Physiol.9, 89–151 (1973).

    Article  CAS  Google Scholar 

  11. D. Tarvin and A.M. Buswell, The methane fermentation of organic acids and carbohydrates. J. Am. chem. Soc.56, 1751–1755 (1934).

    Article  CAS  Google Scholar 

  12. M.T. Balba and W.C. Evans, The methanogenic fermentation of aromatic substrates. Biochem. Soc. Transactions5, 302–304 (1977).

    Article  CAS  Google Scholar 

  13. F.M. Clark and L.R. Fina, The anaerobic decomposition of benzoic acid during methane fermentation. Archs Biochem.36, 26–32 (1952).

    Article  CAS  Google Scholar 

  14. M. Guyer and G. Hegeman, Evidence for a reductive pathway for the anaerobic metabolism of benzoate. J. Bact.99, 906–907 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C.L. Keith, R.L. Bridges, L.R. Fina, K.L. Inverson and J.A. Cloran, The anaerobic decomposition of benzoic acid during methane fermentation. IV. Archs Microbiol.118, 173–176 (1978).

    Article  CAS  Google Scholar 

  16. P.M. Nottingham and R.E. Hungate, Methanogenic fermentation of benzoate. J. Bact.98, 1170–1172 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W.C. Evans, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature270, 17–22 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. F. Widdel, Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduzierender Bakterien. Thesis, University of Göttingen, FRG, 1980.

    Google Scholar 

  19. J.G. Ferry and R.S. Wolfe, Anaerobic degradation of benzoate to methane by a microbial consortium. Archs Microbiol.107, 33–40 (1976).

    Article  CAS  Google Scholar 

  20. J.B. Healy and L.Y. Young, Catechol and phenol degradation by a methanogenic population of bacteria. Appl. environm. Microbiol.35, 216–218 (1978).

    Article  CAS  Google Scholar 

  21. J.B. Healy and L.Y. Young, Anaerobic biodegradation of eleven aromatic compounds to methane. Appl. environm. Microbiol.38, 84–89 (1979).

    Article  CAS  Google Scholar 

  22. J.B. Healy, L.Y. Young and M. Reinhard, Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl. environ. Microbiol.39, 436–444 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P.L. McCarthy, L.Y. Young, J.M. Gossett, D.C. Stuckey and J.B. Healy, Heat treatment for increasing methane yields from organic materials, in: Microbial Energy Conversion, p. 179–199. Ed. H.G. Schlegel and J. Barnes. Pergamon Press, Oxford 1977.

    Chapter  Google Scholar 

  24. R.F. Christman and R.T. Oglesby, Microbial degradation and the formation of humus, in: Lignins, occurrence, formation, structure and reactions, p. 769–796. Ed. K.V. Sarkenen and C.H. Ludwig. Wiley Intersci., New York 1971.

    Google Scholar 

  25. W.C. Browning, The lignosulfonate challenge. Appl. Polymer Symp.28, 109–124 (1975).

    CAS  Google Scholar 

  26. A.L. Compere and W.L. Griffith, Industrial chemicals and chemical feedstocks from wood pulping wastewaters. Tappi63/2, 101–104 (1980).

    Google Scholar 

  27. D.E. Eveleigh, The microbial production of industrial chemicals. Scient. Am.245, 120–130 (1981).

    Article  Google Scholar 

  28. J.G. Zeikus, Chemical and fuel production by anaerobic bacteria. A. Rev. Microbiol.34, 423–464 (1980).

    Article  CAS  Google Scholar 

  29. I.S. Goldstein, ed., Organic chemicals from biomass, to be published by CRC Press, Boca Raton, FL.

  30. S. Rosenberg and C.R. Wilke, Lignin biodegradation and the production of ethylalcohol from cellulose, in: Lignin Biodegradation; Microbiology, Chemistry and Potential Applications, vol. 2, p. 199–212. Ed. T.K. Kirk, T. Higuchi and H. Chang. CRC Press, Boca Raton, FL, 1980.

    Google Scholar 

  31. Inventa, Ethanol process by wood saccharification, process description 81-D1. Inventa, Donat-Ems 1981.

  32. P. Wettstein and B. Domeisen, Production of ethanol from wood. 1st Int. Energy Agency (IEA) Conf. on new energy conservation technologies and their commercialization, 1981.

  33. R.P. Aftring and B.F. Taylor, Aerobic and anaerobic catabolism of phthalic acid by a nitrate-respiring bacterium. Archs Microbiol.130, 101–104 (1981).

    Article  CAS  Google Scholar 

  34. R. Bache and N. Pfennig, Selective isolation ofAcetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Archs Microbiol.130, 255–261 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgment. We thank Ms H. Müller and Dr G. Hanselmann-Mason for their help in preparing the manuscript. Part of this work has been presented at the annual meeting of the Swiss Society for Microbiology 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, J.P., Hanselmann, K.W. Aromatic chemicals through anaerobic microbial conversion of lignin monomers. Experientia 38, 167–176 (1982). https://doi.org/10.1007/BF01945070

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01945070

Keywords

Navigation