Skip to main content
Log in

Nitrogenous cations as probes of permeation channels

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Nitrogenous cations may provide information-rich probes of cation-selective channels. Hence, for 52 nitrogenous cations we have used dilution potentials and biionic potentials to measure relative permeability coefficients (P's) across gallbladder epithelia of frog and rabbit, and have also determined the free-solution mobilities. MeasuredP's of most cations are uninfluenced by the presence of the neutral form. The main permeation pathway for most hydrophilic cations is across the tight junctions.P's decrease with molecular size and increase with number of donor protons available for hydrogen-bond formation. Selectivity isotherms have been constructed from variation inP's due to pH or due to differences among individual animals. Both types of variation are consistent with the pattern expected from variation in electrostatic field strength of cation-binding sites. The isotherms permitP's to be re-expressed in a way that largely eliminates effects of species differences in field strength. Remaining species differences inP's are well fitted by a model of steric restriction, provided that one takes into account the effect of hydrogen bonding on molecular size. Rabbit gallbladder behaves as if it has narrower permeation channels than frog gallbladder. After correction for these steric effects,P is found to increase with number of donor protonsn H up to four protons, with a steeper slope in rabbit than in frog gallbladder, but is independent ofn H from four to at least nine. Two groups of cations appear to permeate significantly via pathways other than tight junctions: oxycations, via polar pathways in epithelial cell membranes of rabbit but not frog gallbladder; and lipid-soluble cations, via membrane lipid.

The results suggest that the cation-binding sites of gallbladder tight junction are acidic proton-acceptors that discriminate more sharply among proton donors than does water. Proton-rich solutes tend to be more permeant for two reasons: stronger binding energies to membrane proton-acceptor sites, and smaller effective size in a proton-acceptor environment. As deduced from comparisons of nitrogenous cation selectivity patterns, the permeation channel through gallbladder tight junction differs from nerve's sodium channel and artificial carriers and channels in its higher hydration and lower range of selectivity. Based on the steric analysis of nitrogenous cation permeation, one can correct alkali cation permeability coefficients for the effect of steric restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. M., Small, R. W. H. 1973. The structure of ammonium carbamate.Acta Crystalographica B29:2317

    Google Scholar 

  • Armstrong, C. M., Binstock, L. J. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride.J. Gen. Physiol. 48:859

    PubMed  Google Scholar 

  • Barry, P. H., Diamond, J. M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93

    Google Scholar 

  • Barry, P. H., Diamond, J. M., Wright, E. M. 1971. The mechanism of cation permeation in rabbit gallbladder. Dilution potentials and biionic potentials.J. Membrane Biol. 4:358

    Google Scholar 

  • Benzanilla, F., Armstrong, C. M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    PubMed  Google Scholar 

  • Collander, R. 1949. Die Verteilung organischer Verbindungen zwischen Äther und Wasser.Acta Chem. Scand. 4:1085

    Google Scholar 

  • Collander, R. 1954. The permeability ofNitella to non-electrolytes.Physiol. Pl. 7:420

    Google Scholar 

  • Desnoyers, J. E., Arel, M., Leduc, P. A. 1969. Conductance and viscosity ofn-alkylamine hydrobromides in water at 25 °C.Canad. J. Chem. 47:547

    Google Scholar 

  • Diamond, J. M. 1962. Mechanism of solute transport by the gall-bladder.J. Physiol. 161:474

    Google Scholar 

  • Diamond, J. M. 1966. A rapid method for determining voltage-concentration relations across membranes.J. Physiol. 183:83

    PubMed  Google Scholar 

  • Diamond, J. M., Katz, Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water.J. Membrane Biol. 17:121

    Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969a. Biological membranes: The physical basis of ion and non-electrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969b. Molecular forces governing non-electrolyte permeation through cell membranes.Proc. Roy. Soc. B. (London) 172:273

    Google Scholar 

  • Eisenman, G. 1961. On the elementary atomic origin of equilibrium ionic specificity.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 163. Academic Press Inc., New York

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J., Part 2.2:259

    PubMed  Google Scholar 

  • Eisenman, G. 1965a. The electrochemistry of cation-sensitive glass electrodes.In: Advances in Analytical Chemistry and Instrumentation. C. N. Reilley, editor. p. 215. Wiley-Interscience, New York

    Google Scholar 

  • Eisenman, G. 1965b. Some elementary factors involved in specific ion permeation.Proc. XXIII Int. Congr. Physiol. Sci., Tokyo, p. 489

  • Eisenman, G., Krasne, S. J. 1973. The selectivity of carrier antibiotics for substituted ammonium ions.Biophys. J. 13:244a

    Google Scholar 

  • Eisenman, G., Krasne, S. J. 1974. The ion selectivity of carrier molecules, membranes and enzymes.In: MTP International Review of Science, Biochemical Series. C.F. Fox, editor. Vol. 2. Butterworths, London

    Google Scholar 

  • Fenichel, I. R., Horowitz, S. B. 1965. Diffusional specificity of water.Ann. N.Y. Acad. Sci. 125:290

    Google Scholar 

  • Finkelstein, A. 1970. Weak acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes.Biochim. Biophys. Acta 205:1

    PubMed  Google Scholar 

  • Frank, H. S., Evans, M. W. 1945. Free volume and entropy in condensed systems. III. Entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes.J. Chem. Phys. 13:507

    Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  • Frömter, E., Diamond, J. M. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9

    Google Scholar 

  • Galey, W. R., Owen, J. D., Solomon, A. R. 1973. Temperature dependance of non-electrolyte permeation across red cell membranes.J. Gen. Physiol. 61:727

    PubMed  Google Scholar 

  • Garbassi, F., Giarda, L., Fagherazzi, G. 1972. The crystal structure of methyl diammonium phosphate dihydrate.Acta Crystalographica. B28:1663

    Google Scholar 

  • Hadzi, D., editor. 1959. Hydrogen Bonding. Pergamon Press, New York

    Google Scholar 

  • Hille, B. 1967. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion.J. Gen. Physiol. 50:1287

    PubMed  Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599

    PubMed  Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve: Selective permeability to small cations.J. Gen. Physiol. 61:669

    PubMed  Google Scholar 

  • Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 3. Marcel Dekker, New York

    Google Scholar 

  • Hingson, D. J., Diamond, J. M. 1972. Comparison of nonelectrolyte permeability patterns in several epithelia.J. Membrane Biol. 10:93

    Google Scholar 

  • Horowitz, S. B., Fenichel, I. R. 1964. Solute diffusional specificity in hydrogen-bonding systems.J. Physical Chem. 68:3378

    Google Scholar 

  • Kielland, J. 1937. Individual activity coefficients of ions in aqueous solutions.J. Amer. Chem. Soc. 59:1675

    Google Scholar 

  • Krasne, S. J., Eisenman, G. 1973. Molecular basis of ion selectivity.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 2, Chap. 3, Sec. V. Marcel Dekker, New York

    Google Scholar 

  • Krishnan, C. V., Friedman, H. L. 1970. Enthalpies of alkylammonium ions in water, heavy-water, propylene carbonate and dimethylsulfoxide.J. Phys. Chem. 74:3900

    Google Scholar 

  • Ladd, M. F. C. 1968. The radii of spherical ions.Theoret. Chem. Acta (Berl.) 12:333

    Google Scholar 

  • Lange, Y., Gary-Bobo, C. M., Solomon, A. K. 1974. Nonelectrolyte diffusion through lecithin-water lamellar phases and red cell membranes.J. Gen. Physiol. (in press)

  • LeBlanc, O. H., Jr. 1971. The effect of uncouplers of oxydative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227

    Google Scholar 

  • Liberman, E. A., Topaly, V. P. 1968. Transfer of ions across bimolecular membranes and classification of uncouplers of oxidative phosphorylation.Biofizika 13:1025

    PubMed  Google Scholar 

  • Lindenbaum, S., Boyd, G. E. 1964. Osmotic and activity coefficients for the symmetrical tetraalkylammonium halides in aqueous solution at 25 °C.J. Phys. Chem. 68:911

    Google Scholar 

  • Lorente de Nó, R., Vidal, F., Larramendi, L. M. H. 1957. Restoration of sodium-deficient frog nerve fibers by onium ions.Nature 179:737

    Google Scholar 

  • MacInnes, D. A. 1961. The Principles of Electrochemistry. Dover Publications Inc., New York

    Google Scholar 

  • Maeno, T. 1974. Studies on the permeability of end-plate membrane to several organic cations.J. Physiol. Soc. Japan 36:89

    Google Scholar 

  • Moreno, J. H. 1974. Blockage of cation permeability across the tight junctions of gallbladder and other leaky epithelia.Nature 251:150

    PubMed  Google Scholar 

  • Moreno, J. H. 1975a. The blockage of gallbladder tight junction cation selective channels by 2,4,6-triaminopyrimidinium (TAP).J. Gen. Physiol. (submitted)

  • Moreno, J. H. 1975b. The active salt transport and the routes of nonelectrolyte permeability in gallbladder: Effect of 2,4,6-triaminopyrimidinium (TAP).J. Gen. Physiol. (submitted)

  • Moreno, J. H., Diamond, J. M. 1973a. Selective permeation of small organic cations in gallbladder epithelium.Biophys. J. 13:85a

    Google Scholar 

  • Moreno, J. H., Diamond, J. M. 1973b. Selectivity isotherms for permeation of monovalent cations in gallbladder epithelium.Nature, New Biol. 246:92

    Google Scholar 

  • Moreno, J. H., Diamond, J. M. 1974a. Role of hydrogen bonding in organic cation discrimination by “tight junctions” of gallbladder epithelium.Nature 247:368

    PubMed  Google Scholar 

  • Moreno, J. H., Diamond, J. M. 1974b. Discrimination of monovalent inorganic cations by “tight” junctions of gallbladder epithelium.J. Membrane Biol. 15:277

    Google Scholar 

  • Moreno, J. H., Diamond, J. M. 1975. Cation permeation mechanism and cation selectivity in “tight junctions” of gallbladder epithelium.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 3. Marcel Dekker, New York (in press)

    Google Scholar 

  • Naccache, P., Sha'afi, R. I. 1973. Patterns of nonelectrolyte permeability in human red blood cell membrane.J. Gen. Physiol. 62:714

    PubMed  Google Scholar 

  • Parlin, R. B., Eyring, H. 1957. Membrane permeability and electrical potential.In: Ion Transport across Membranes. H. T. Clarke, editor. Academic Press, New York

    Google Scholar 

  • Pauling, L. 1960. The Nature of the Chemical Bond. Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  • Pimentel, G. C., McClellan, A. L. 1960. The Hydrogen Bond. Reinhold Publishing Corp., New York

    Google Scholar 

  • Renkin, E. M. 1954. Filtration, diffusion, and molecular sieving through porous cellulose membranes.J. Gen. Physiol. 38:225

    PubMed  Google Scholar 

  • Robinson, R. A., Stokes, R. H. 1970. Electrolyte Solutions. Butterworths, London

    Google Scholar 

  • Rupley, J. A. 1964. The effect of urea and amides upon water structure.J. Phys. Chem. 68:2002

    Google Scholar 

  • Sanderson, P. H. 1952. Potentiometric determination of chloride in biological fluids.Biochem. J. 52:502

    PubMed  Google Scholar 

  • Sherry, H. S. 1969. The ion-exchange properties of zeolites.In: Ion Exchange. J. Marinsky, editor. Vol. 2, p. 89. Marcel Dekker, New York

    Google Scholar 

  • Simon, W., Morf, W. E. 1973. Alkali cation specificity of carrier antibiotics and their behavior in bulk membranes.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 2, p. 329. Marcel Dekker, New York

    Google Scholar 

  • Smulders, A. P., Wright, E. M. 1971. The magnitude of nonelectrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. 5:297

    Google Scholar 

  • Tasaki, I., Hagiwara, S. 1957. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride.J. Gen. Physiol. 40:859

    PubMed  Google Scholar 

  • Tedeschi, H., Harris, D. L. 1955. The osmotic behavior and permeability to nonelectrolytes of mitochondria.Arch. Biochem. Biophys. 58:52

    PubMed  Google Scholar 

  • Wartiovaara, V. 1942. Über die Temperaturabhängigkeit der Protoplasmapermeabilität.Ann. Bot. Soc. Zool.-Bot. Fen. Vanamo. 16:1

    Google Scholar 

  • Wartiovaara, V. 1956. Abhängigkeit des Stoffaustausches von der Temperatur.In: Handbuch der Pflanzenphysiologie. Vol. 2, p. 369. W. Ruhland, editor. Springer-Verlag, Berlin

    Google Scholar 

  • Wright, E. M., Diamond, J. M. 1968. Effects of pH and polyvalent cations on the selective permeability of gall-bladder epithelium to monovalent ions.Biochim. Biophys. Acta 163:57

    PubMed  Google Scholar 

  • Wright, E. M., Diamond, J. M. 1969. Patterns of non-electrolyte permeability.Proc. Roy. Soc. B. (London) 172:227

    Google Scholar 

  • Wright, E. M., Pietras, R. J. 1974. Routes of nonelectrolyte permeation across epithelial membranes.J. Membrane Biol. 17:293

    Google Scholar 

  • Wyckoff, R. W. G. 1962. Crystal Structures. John Wiley and Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, J.H., Diamond, J.M. Nitrogenous cations as probes of permeation channels. J. Membrain Biol. 21, 197–259 (1975). https://doi.org/10.1007/BF01941070

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941070

Keywords

Navigation