Skip to main content
Log in

Membrane fusion

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The factors involved in the regulation of biological membrane fusion and models proposed for the molecular mechanism of biomembrane fusion are reviewed. The results obtained in model systems are critically discussed in the light of the known properties of biomembranes and characteristics of biomembrane fusion. Biological membrane fusion is a local-point event; extremely fast, non-leaky, and under strict control. Fusion follows on a local and most probably protein-modulated destabilization, and a transition of the interacting membranes from a bilayer to a non-bilayer lipid structure. The potential role of type II non-bilayer preferring lipids and of proteins in the local destabilization of the membranes is evaluated. Proteins are not only responsible for the mutual recognition of the fusion partners, but are most likely also to be involved in the initiation of biomembrane fusion, by locally producing or activating fusogens, or by acting as fusogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Ahkong, Q. F., and Lucy, J. A., Localized osmotic swelling and cell fusion in erythrocytes: possible implications for exocytosis. J. Cell. Sci.91 (1988) 597–601.

    Article  PubMed  Google Scholar 

  2. Akabas, M. H., Cohen, F. S., and Finkelstein, A., Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J. Cell Biol.98 (1984) 1063–1071.

    Article  CAS  PubMed  Google Scholar 

  3. Altstiel, L., and Branton, D., Fusion of coated vesicles with lysosomes: measurement with a fluorescence assay. Cell32 (1983) 921–929.

    Article  CAS  PubMed  Google Scholar 

  4. Baker, P. F., Exocytosis in electropermeabilized cells: clues to mechanism and physiological control, in: Current Topics in Membranes and Transport, vol. 32, pp. 115–138. Eds N. Düzgünes and F. Bronner. Academic Press, San Diego 1988.

    Google Scholar 

  5. Balch, W. E., Dunphy, W. G., Braell, W. A., and Rothman, J. E., Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell39 (1984) 405–416.

    Article  CAS  PubMed  Google Scholar 

  6. Batenburg, A. M., Hibbeln, J. C. L., Verkleij, A. J., and De Kruijff, B. Melittin induces HII phase formation in cardiolipin model membranes. Biochim. biophys. Acta903 (1987) 142–154.

    Article  CAS  PubMed  Google Scholar 

  7. Beckers, C. J. M., and Balch, W. E., Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J. Cell Biol.108 (1989) 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  8. Beckers, C. J. M., Block, M. R., Glick, B. S., Rothman, J. E., and Balch, W. E., Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature339 (1989) 397–398.

    Article  CAS  PubMed  Google Scholar 

  9. Bentz, J., and Ellens, H., Membrane fusion: kinetics and mechanisms. Coll. Surf.30 (1988) 65–112.

    Article  CAS  Google Scholar 

  10. Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T., and Rothman, J. E., Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. natl. Acad. Sci. USA85 (1988) 7852–7856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blumenthal, R., Membrane fusion, in: Current Topics in Membranes and Transport, vol. 29, pp. 203–254. Eds. R. D. Klausner, C. Kempf and J. van Renswoude. Academic Press, Orlando 1987.

    Google Scholar 

  12. Bourne, H. R., Do GTPases direct membrane traffic in secretion? Cell53 (1988) 669–671.

    Article  CAS  PubMed  Google Scholar 

  13. Brocklehurst, K. W., and Pollard, H. B., Osmotic effects in membrane fusion during exocytosis, in: Current Topics in Membranes and Transport, vol. 32, pp. 203–225. Eds N. Düzgünes and F. Bronner. Academic Press, San Diego 1988.

    Google Scholar 

  14. Burger, K. N. J., Knoll, G., Frederik, P. M., and Verkleij, A. J., Influenza virus mediated membrane fusion: the identification of fusion intermediates using modern cryotechniques. NATO ASI Series, Vol. 40, pp. 185–196. Ed. J.A.F Op den Kamp. Springer-Verlag, Berlin 1990.

    Google Scholar 

  15. Chandler, D. E., Comparison of quick-frozen and chemically fixed sea-urchin eggs: structural evidence that cortical granule exocytosis is preceded by a local increase in membrane mobility. J. Cell Sci.72 (1984) 23–36.

    Article  CAS  PubMed  Google Scholar 

  16. Chandler, D. E., Exocytosis and endocytosis: membrane fusion events captured in rapidly frozen cells, in: Current Topics in Membranes and Transport, vol. 32, pp. 169–202. Eds N. Düzgünes and F. Bronner. Academic Press, San Diego 1988.

    Google Scholar 

  17. Chandler, D. E., and Heuser, J. E., Membrane fusion during secretion. Cortical granule exocytosis in Sea urchin eggs as studied by quick-freezing and freeze-fracture. J. Cell Biol.83 (1979) 91–108.

    Article  CAS  PubMed  Google Scholar 

  18. Chandler, D. E., and Heuser, J. E., Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol.86 (1980) 666–674.

    Article  CAS  PubMed  Google Scholar 

  19. Chandler, D. E., Whitaker, M., and Zimmerberg, J., High molecular weight polymers block cortical granule exocytosis in Sea urchin eggs at the level of granule matrix disassembly. J. Cell Biol.109 (1989) 1269–1278.

    Article  CAS  PubMed  Google Scholar 

  20. Cheek, T. R., and Burgoyne, R. D., Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J. Cell Biol.262 (1987) 11663–11666.

    CAS  Google Scholar 

  21. Chernomordik, L. V., Kozlov, M. M., Melikyan, G. B., Abidor, I. G., Markin, V. S., and Chizmadzhev, Y. A., The shape of lipid molecules and monolayer membrane fusion. Biochim. biophys. Acta812 (1985) 643–655.

    Article  CAS  Google Scholar 

  22. Chernomordik, L. V., Melikyan, G. B., and Chizmadzhev, Y. A., Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. biophys. Acta906 (1987) 309–352.

    Article  CAS  PubMed  Google Scholar 

  23. Creutz, C. E., Cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J. Cell Biol.91 (1981) 247–256.

    Article  CAS  PubMed  Google Scholar 

  24. Creutz, C. E., Zaks, W. J., Hamman, H. C. and Martin, W. H., The roles of Ca2+-dependent membrane binding proteins in the regulation and mechanism of exocytosis, in: Cell Fusion, pp. 45–68. Ed. A. W. Sowers. Plenum Press, New York 1987.

    Chapter  Google Scholar 

  25. Davey, J., Hurtley, S. M., and Warren, G., Reconstitution of an endocytic fusion event in a cell-free system. Cell43 (1985) 643–652.

    Article  CAS  PubMed  Google Scholar 

  26. De Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., Van Echteld, C. J. A., and Taraschi, T. F., Lipid polymorphism and membrane function, in: The Enzymes of Biological Membranes, vol. 1, 2nd edn, pp. 131–204. Ed. A. N. Martonosi. Plenum Press, New York 1985.

    Chapter  Google Scholar 

  27. De Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., Van Echteld, C. J. A., Taraschi, T. F., Van Hoogevest, P., Killian, J. A., Rietveld, A., and Van Der Steen, A. T. M., Modulation of lipid polymorphism by lipid protein interactions, in: Progress in Protein-Lipid Interactions, pp. 89–142. Eds. A. Watts and J. J. H. H. M. De Pont. Elsevier Publishers, Amsterdam 1985.

    Google Scholar 

  28. De Lisle, R. C., and Williams, J. A., Regulation of membrane fusion in secretory exocytosis. A. Rev. Physiol.48 (1986) 225–238.

    Article  Google Scholar 

  29. Diaz, R., Mayorga, L. S., and Stahl, P., In vitro fusion of endosomes following receptor-mediated endocytosis. J. biol. Chem.263 (1988) 6093–6100.

    Article  CAS  PubMed  Google Scholar 

  30. Diaz, R., Mayorga, L. S., Weidman, P. J., Rothman, J. E., and Stahl, P. D., Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature339 (1989) 398–400.

    Article  CAS  PubMed  Google Scholar 

  31. Düzgünes, N., Membrane fusion, in: Subcellular Biochemistry, vol. 11. pp. 195–287. Ed. D. B. Roodyn. Plenum Press, New York 1985.

    Chapter  Google Scholar 

  32. Düzünes, N., and Bronner, F., Eds., Membrane fusion in fertilization, cellular transport and viral infection, in: Current Topics in Membranes and Transport, vol. 32. Academic Press, San Diego 1988.

    Google Scholar 

  33. Düzgünes, N., Paiement, J., Freeman, K. B., Lopez, N. G., Wilschut, J., and Papahadjopoulos, D., Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry23 (1984) 3486–3494.

    Article  PubMed  Google Scholar 

  34. Ellens, H., Bentz, J., and Szoka, F. C., Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the Lα-HII phase transition. Biochemistry25 (1985) 4141–4147.

    Article  Google Scholar 

  35. Forest, C. L., Mating structure-cell adhesion molecules: Their role in fertilization inChlamydomonas. Ann. N.Y. Acad. Sci.494 (1987) 202–204.

    Article  Google Scholar 

  36. Friend, D. S., and Heuser, J. E., Orderly particle arrays on the mitochondrial outer membrane in rapidly frozen sperm. Anat. Rec.199 (1981) 159–175.

    Article  CAS  PubMed  Google Scholar 

  37. Frye, R. A., and Holz, R. W., Arachidonic acid release and catecholamine secretion from digitonin-treated chromaffin cells: Effects of micromolar calcium, phorbol ester, and protein alkylating agents. J. Neurochem.44 (1985) 265–273.

    Article  CAS  PubMed  Google Scholar 

  38. Glick, B. S., and Rothman, J. E., Possible role for fatty acylcoenzyme A in intracellular protein transport. Nature326 (1987) 309–312.

    Article  CAS  PubMed  Google Scholar 

  39. Gomperts, B. D., Calcium shares the limelight in stimulus-secretion coupling. TIBS11 (1986) 290–292.

    CAS  Google Scholar 

  40. Gruenberg, J. E., and Howell, K. E., Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system. EMBO J.5 (1986) 3091–3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harter, C., James, P., Bächi, T., Semenza, G., and Brunner, J., Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the ‘fusion peptide’. J. biol. Chem.264 (1989) 6459–6464.

    Article  CAS  PubMed  Google Scholar 

  42. Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L., and Evans, L., Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol.81 (1979) 275–300.

    Article  CAS  PubMed  Google Scholar 

  43. Heuser, J. E., Reese, T. S., and Landis, D. M. D., Functional changes in frog neuromuscular junctions studied with freeze-fracture. J. Neurocytol.3 (1974) 109–131.

    Article  CAS  PubMed  Google Scholar 

  44. Hoekstra, D., and Kok, J. W., Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosci. Rep.9 (1989) 273–305.

    Article  CAS  PubMed  Google Scholar 

  45. Hope, M. J., and Cullis, P. R., The role of non-bilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens. Biochim. biophys. Acta640 (1981) 82–90.

    Article  CAS  PubMed  Google Scholar 

  46. Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., Membrane fusion through point defects in bilayers. Science212 (1981) 921–923.

    Article  CAS  PubMed  Google Scholar 

  47. Jackson, R. C., and Crabb, J. H., Cortical exocytosis in the Sea urchin egg, in: Current Topics in Membranes and Transport, vol. 32, pp. 45–85. Eds. N., Düzgünes and F. Bronner. Academic Press, San Diego 1988.

    Google Scholar 

  48. Killian, J. A., Timmermans, J. W., Keur, S., and De Kruijff, B., The tryptophans of gramicidin are essential for the lipid structure modulating effect of the peptide, Biochim. biophys. Acta820 (1985) 154–156.

    Article  CAS  PubMed  Google Scholar 

  49. Knight, D. E., and Baker, P. F., The phorbol ester TPA increases the affinity of exocytosis for calcium in ‘leaky’ adrenal medullary cells. FEBS Lett.22 (1983) 98–100.

    Article  Google Scholar 

  50. Knoll, G., Burger, K. N. J., Bron, R., Van Meer, G., and Verkleij, A. J., Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze-fracture and autoradiography of plastic sections. J. Cell Biol.107 (1988) 2511–2521.

    Article  CAS  PubMed  Google Scholar 

  51. Knoll, G., Verkleij, A. J., and Plattner, H., Cryofixation of dynamic processes in cells and organelles, in: Cryotechniques in Biological Electron Microscopy, pp. 258–271. Eds R. A. Steinbrecht and K. Zierold. Springer-Verlag, Berlin 1987.

    Chapter  Google Scholar 

  52. Leikin, S. L., Kozlov, M. M., Chernomordik, L. V., Markin, V. S., and Chizmadzhev, Y. A., Membrane fusion: overcoming of the hydration barrier and local restructuring. J. theor. Biol.129 (1987) 411–425.

    Article  CAS  PubMed  Google Scholar 

  53. Leyton, L., and Saling, P., 95 kD sperm proteins bind ZP3 and serve as tyrosine kinase substrates in response to zona binding. Cell57 (1989) 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  54. Lucy, J. A., The fusion of biological membranes. Nature227 (1970) 814–817.

    Article  Google Scholar 

  55. Lucy, J. A., Mechanisms of chemically induced cell fusion. Cell Surf. Rev.5 (1978) 267–304.

    CAS  Google Scholar 

  56. Lucy, J. A., Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reactions in vivo? FEBS Lett.166 (1984) 223–231.

    Article  CAS  PubMed  Google Scholar 

  57. Lucy, J. A., and Ahkong, Q. F., An osmotic model for the fusion of biological membranes. FEBS Lett.199 (1986) 1–11.

    Article  CAS  PubMed  Google Scholar 

  58. Mandel, L. J., and Eaton, D. C., Cell calcium and the control of membrane transport. 40th Annual Symposium of the Society of General Physiologist. Rockefeller University Press, New York 1987.

    Google Scholar 

  59. Mayorga, L. S., Diaz, R., and Stahl, P. D., Regulatory role for GTP-binding proteins in endocytosis. Science244 (1989) 1475–1477.

    Article  CAS  PubMed  Google Scholar 

  60. Melancon, P., Glick, B. S., Malhotra, V., Weidman, P. J., Serafini, T., Gleason, M. L., Orci, L., and Rothman, J. E., Involvement of GTP-binding “G” proteins in transport through the Golgi stack. Cell51 (1987) 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  61. Menco, B. P. M., A survey of ultra-rapid cryofixation methods with particular emphasis on applications to freeze-fracturing, freezeetching and freeze-substitution. J. Electr. Microsc. Techn.4 (1986) 177–240.

    Article  Google Scholar 

  62. Morré, D. J., Paulik, M., and Nowack, D., Transition vesicle formation in vitro. Protoplasma132 (1986) 110–113.

    Article  Google Scholar 

  63. Nieva, J. L., Goni, F. M., and Alonso, A., Liposome fusion catalytically induced by phospholipase C. Biochemistry28 (1989) 7364–7367.

    Article  CAS  PubMed  Google Scholar 

  64. Nowack, D. D., Morré, D. M., Paulik, M., Keenan, T. W., and Morré, D. J., Intracellular membrane flow: Reconstitution of transition vesicle formation and function in a cell-free system. Proc. natl Acad. Sci. USA84 (1987) 6098–6102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Op den Kamp, J. A. F., Lipid asymmetry in membranes. A. Rev. Biochem.48 (1979) 47–71.

    Article  Google Scholar 

  66. Orci, L., and Perrelet, A., Ultrastructural aspects of exocytotic membrane fusion. Cell Surf. Rev.5 (1978) 629–656.

    CAS  Google Scholar 

  67. Palade, G. E., and Bruns, R. R., Structural modulations of plasmalemmal vesicles. J. Cell Biol.37 (1968) 633–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Papahadjopoulos, D., Portis, A., and Pangborn, W., Calcium-induced lipid phase transitions and membrane fusion. Ann. N.Y. Acad. Sci.308 (1978) 50–66.

    Article  CAS  PubMed  Google Scholar 

  69. Parente, R. A., Nir, S., and Szoka, F. C., pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide. J. biol. Chem.263 (1988) 4724–4730.

    Article  CAS  PubMed  Google Scholar 

  70. Perrin, D., Langley, O. K., and Aunis, D., Anti-α-fodrin inhibits secretion from permeabilized chromaffin cells. Nature326 (1987) 498–501.

    Article  CAS  PubMed  Google Scholar 

  71. Pinto da Silva, P., and Nogueira, M. L., Membrane fusion during secretion. A hypothesis based on electron microscope observation ofPhytophthora palmivora zoospores during encystment. J. Cell Biol.73 (1977) 161–181.

    Article  CAS  PubMed  Google Scholar 

  72. Plattner, H., Membrane behaviour during exocytosis. Cell Biol. Int. Rep.5 (1981) 435–459.

    Article  CAS  PubMed  Google Scholar 

  73. Plattner, H., Synchronous exocytosis in Paramecium cells, in: Cell Fusion, pp. 69–98. Ed. A. E. Sowers. Plenum Press, New York 1987.

    Chapter  Google Scholar 

  74. Plattner, H., and Zingsheim, H. P., Electron microscopic methods in cellular and molecular biology. Subcell. Biochem.9 (1983) 1–236.

    CAS  PubMed  Google Scholar 

  75. Pollard, H. B., Pazoles, C. J., Creutz, C. E., and Zinder, O., The chromaffin granule and possible mechanisms of exocytosis. Int. Rev. Cytol.58 (1979) 159–197.

    Article  CAS  PubMed  Google Scholar 

  76. Rand, R. P., Fuller, N., Parsegian, V. A., and Rau, D. C., Variation in hydration forces between neutral phospholipid bilayers: Evidence for hydration attraction. Biochemistry27 (1988) 7711–7722.

    Article  CAS  PubMed  Google Scholar 

  77. Rand, R. P., and Parsegian, V. A., Physical force considerations in model and biological membranes. Can. J. Biochem. Cell Biol.62 (1984) 752–759.

    Article  CAS  PubMed  Google Scholar 

  78. Rink, T. J., Sanchez, A., and Hallam, T. J., Diaglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature305 (1983) 317–319.

    Article  CAS  PubMed  Google Scholar 

  79. Rothman, J. E., Urbani, L. J., and Brands, R., Transport of protein between cytoplasmic membranes of fused cells: correspondence to processes reconstituted in a cell-free system. J. Cell Biol.99 (1984) 248–259.

    Article  CAS  PubMed  Google Scholar 

  80. Satir, B., Ultrastructural aspects of membrane fusion. J. supramolec. Struct.2 (1974) 529–537.

    Article  CAS  Google Scholar 

  81. Schäfer, T., Karli, U. O., Schweizer, F. E., and Burger, M. M., Docking of chromaffin granules — A necessary step in exocytosis? Biosci. Rep.7 (1987) 269–279.

    Article  PubMed  Google Scholar 

  82. Scheule, R. K., Fusion of Sindbis virus with model membranes containing phosphatidylethanolamine: implications for protein-induced membrane fusion. Biochim. biophys. Acta899 (1987) 185–195.

    Article  CAS  PubMed  Google Scholar 

  83. Schmidt, W., Patzak, A., Lingg, G., Winkler, H., and Plattner, H., Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. Eur. J. Biochem.32 (1983) 31–37.

    CAS  Google Scholar 

  84. Schweizer, F. E., Schäfer, T., Tapparelli, C., Crob, M., Karli, U. O., Heumann, R., Thoenen, H., Bookman, R. J., and Burger, M. M., Inhibition of exocytosis by intracellularly applied antibodies against a chromaffin granule-binding protein. Nature339 (1989) 709–712.

    Article  CAS  PubMed  Google Scholar 

  85. Siegel, D. P., Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys. J.49 (1986) 1171–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Siegel, D. P., Membrane-membrane interactions via intermediates in lamellar-to-inverted hexagonal phase transitions, in: Cell Fusion, pp. 81–208. Ed. A. E. Sowers. Plenum Press, New York 1987.

    Google Scholar 

  87. Siegel, D. P., Banschbach, J., Alford, D., Ellens, H., Lis, L. J., Quinn, P. J., Yeagle, P. L., and Bentz, J., Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. Biochemistry28 (1989) 3703–3709.

    Article  CAS  PubMed  Google Scholar 

  88. Sowers, A. E., Ed., Cell Fusion. Plenum Press, New York 1987.

    Book  Google Scholar 

  89. Specian, R. D., and Neutra, M. R., Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J. Cell Biol.85 (1980) 626–640.

    Article  CAS  PubMed  Google Scholar 

  90. Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J., Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry24 (1985) 3107–3113.

    Article  CAS  PubMed  Google Scholar 

  91. Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J., Fusion activity of influenza-virus. A comparison between biological and artificial target membrane vesicles. J. biol. Chem.261 (1986) 10 966–10 969.

    Article  CAS  Google Scholar 

  92. Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. A., Endocytosis and the recycling of plasma membrane. J. Cell Biol.96 (1983) 1–27.

    Article  CAS  PubMed  Google Scholar 

  93. Stossel, T. P., Actin filaments and secretion: The macrophage model, in: Methods in Cell Biology, vol. 23, pp. 215–230. Eds. A. R. Hand and C. Oliver. Academic Press, New York 1982.

    Google Scholar 

  94. Strittmatter, W. J., Couch, C. B., and Mundy, D. I., Role of metalloendoprotease in fusion of biological membranes, in: Cell Fusion, pp. 99–121. Ed. A. E. Sowers. Plenum Press, New York 1987.

    Chapter  Google Scholar 

  95. Van Meer, G., Davoust, J., and Simons, K., Parameters affecting low-pH-mediated fusion of liposomes with the plasma membrane of cells infected with influenza virus. Biochemistry24 (1985) 3593–3602.

    Article  PubMed  Google Scholar 

  96. Van Venetië, R., and Verkleij, A. J., Analysis of the hexagonal HII phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim. biophys. Acta645 (1981) 262–269.

    Article  PubMed  Google Scholar 

  97. Verkleij, A. J., Lipidic intramembranous particles. Biochim. biophys. Acta779 (1984) 43–63.

    Article  CAS  PubMed  Google Scholar 

  98. Walworth, N. C., Goud, B., Kastan Kabcenell, A., and Novick, P. J., Mutational analysis of SEC 4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J.8 (1989) 1685–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weidmann, P. J., Melancon, P., Block, M. R., and Rothman, J. E., Binding of an N-Ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J. Cell Biol.108 (1989) 1589–1596.

    Article  Google Scholar 

  100. Weiss, R. L., Goodenough, D. A., and Goodenough, U. W., Membrane differentiations at sites specialized for cell fusion. J. Cell Biol.72 (1977) 144–160.

    Article  CAS  PubMed  Google Scholar 

  101. Whitaker, M., How calcium may cause exocytosis in Sea urchin eggs. Biosci. Rep.7 (1987) 383–398.

    Article  CAS  PubMed  Google Scholar 

  102. White, J., Kartenbeck, J., and Helenius, A., Membrane fusion activity of influenza virus. EMBO J.1 (1982) 217–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. White, J., Kielian, M., and Helenius, A., Membrane fusion proteins of enveloped animal viruses. Quart. Rev. Biophys.16 (1983) 151–195.

    Article  CAS  Google Scholar 

  104. Wieslander, A., Rilfors, L., and Lindblom, G., Metabolic changes of membrane lipid composition inAcholeplasma laidlawii by hydrocarbons, alcohols, and detergents: Arguments for effects on lipid packing. Biochemistry25 (1986) 7511–7517.

    Article  CAS  PubMed  Google Scholar 

  105. Wilschut, J., and Hoekstra, D., Membrane fusion: from liposomes to biological membranes. TIBS11 (1984) 479–483.

    Google Scholar 

  106. Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W. J., Henzel, W. J., Block, M. R., Ullrich, A., and Rothman, J. E., A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature339 (1989) 355–359.

    Article  CAS  PubMed  Google Scholar 

  107. Woodman, P. G., and Warren, G., Fusion between vesicles from the pathway of receptor-mediated endocytosis in a cell-free system. Eur. J. Biochem.173 (1988) 101–108.

    Article  CAS  PubMed  Google Scholar 

  108. Zieseniss, E., and Plattner, H., Synchronous exocytosis inParamecium cells involves very rapid (≤ 1 s), reversible dephosphorylation of a 65 kD phosphoprotein in exocytosis-competent strains. J. Cell Biol.101 (1985) 2028–2035.

    Article  CAS  PubMed  Google Scholar 

  109. Zimmerberg, J., Molecular mechanisms of membrane fusion: steps during phospholipid and exocytic membrane fusion. Biosci. Rep.7 (1987) 251–268.

    Article  CAS  PubMed  Google Scholar 

  110. Zimmerberg, J., Curran, M., Cohen, F. S., and Brodwick, M., Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. natl Acad. Sci. USA84 (1986) 1585–1589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, K.N.J., Verkleij, A.J. Membrane fusion. Experientia 46, 631–644 (1990). https://doi.org/10.1007/BF01939702

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939702

Key words

Navigation