Skip to main content
Log in

Molecular mechanisms of membrane fusion: Steps during phospholipid and exocytotic membrane fusion

  • Papers
  • Published:
Bioscience Reports

Abstract

Exocytosis is considered as four separate steps: adhesion, fusion/pore formation, pore widening, and content discharge. Experiments on both synthetic and natural membranes are presented to show each of these steps. Major differences are seen in the two fusing systems. These differences are discussed in terms of molecular mechanisms of fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akabas, M. H., Cohen, F. S. and Finkelstein, A. (1984). Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis.J. Cell. Biol. 98:1063–1071.

    Google Scholar 

  • Breckenridge, L. J. and Almers, W. (1987). Final steps in exocytosis observed in a cell with giant secretory granules.Proc. Nat. Acad. Sci. 84: 1945–1949.

    Google Scholar 

  • Boys, C. V. (1959).Soap Bubbles. Dover Publications, Inc. New York, NY, pp. 101–103.

    Google Scholar 

  • Chandler, D. E. (1987). Current topics in membranes and transport, exocytosis and endocytosis: membrane fusion events captured in rapidly frozen cells.Dev. Biol. 5:435–459.

    Google Scholar 

  • Chandler, D. E. and Heuser, J. E. (1980). Arrest of membrane fusion events in mast cells by quick freezing.J. Cell Biol. 86:666–674.

    Google Scholar 

  • Chi, E. Y. and Lagunoff, D. (1975). Abnormal mast cell granules in the beige mouse.J. Histochem. Cytochem. 23:117–122.

    Google Scholar 

  • Cohen, F. S., Akabas, M. H. and Finkelstein, A. (1982). Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membranes.Science 217:458–460.

    Google Scholar 

  • Cohen, F. S., Akabas, M. H., Zimmerberg, J. and Finkelstein, A. (1984). Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membrane.J. Cell Biol. 98:1054–1062.

    Google Scholar 

  • Cohen, F. S., Zimmerberg, J. and Finkelstein, A. (1980). Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane.J. Gen. Physiol. 75:251–270.

    Google Scholar 

  • Duzgunes, N. (1985). Membrane Fusion. In:Subcellular Biochemistry (D. B. Roodyn, Ed.), Plenum Press, New York, Chapter 5, pp. 195–286.

    Google Scholar 

  • Duzgunes, N., Wilshut, J., Fraley, R. and Papahadjopoulos, D. (1981). Studies on the mechanism of membrane fusion: role of head group composition in calcium and magnesium induced fusion of mixed phospholipid vesicles.Biochim. Biophys. Acta. 642:182–195.

    Google Scholar 

  • Evans, E. A. and Parsegian, V. A. (1983). Energetics of membrane deformation and adhesion in cell and vesicle aggregation.Ann. N.Y. Acad. Sci. 416:13–33.

    Google Scholar 

  • Fernadez, M., Neher, E. and Gomperts, B. D. (1984). Capacitance measurements reveal stepwise fusion events in degranulating mast cells.Nature (London) 312:453–455.

    Google Scholar 

  • Finkelstein, A., Zimmerberg, J. and Cohen, F. S. (1986). Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis.Ann. Rev. Physiol. 48:163–174.

    Google Scholar 

  • Green, D. P. L. (1978). The induction of the acrosome reaction in guinea-pig sperm by the divalent metal caption ionophore A23187.J. Cell Sci. 32:137–151.

    Google Scholar 

  • Green, D. P. L. (1982). The course of the acrosome reaction in guinea-pig sperm.J. Cell. Sci. 54:161–171.

    Google Scholar 

  • Gruner, S., Parsegian, V. A. and Rand, R. P. (1986). Lipid vesicles and membranes.Faraday Discuss. Chem. Soc. 81:29–37.

    Google Scholar 

  • Guldbrand, L., Jonsson, B., Wennerstrom, H. and Linse, P. (1984). Electrical double-layer forces—a Monte-Carlo study.J. Chem. Phys. 80:2221–2228.

    Google Scholar 

  • Holz, R. W. (1986). The role of osmotic forces in exocytosis from adrenal chromaffin cells.Ann. Rev. Physiol. 48:175–190.

    Google Scholar 

  • Holz, R. W. and Senter, R. A. (1986). The effects of osmolality and ionic strength on secretion from adrenal chromaffin cells permeabilized with digitonin.J. Neurochem. 46:1835–1842.

    Google Scholar 

  • Kachar, B., Fuller, N. and Rand, R. P. (1986). Morphological responses to calcium-induced interaction of phosphatidylserine-containing vesicles.Biophys. J. 50:779–788.

    Google Scholar 

  • Kwok, R. and Evans, E. (1981). Thermoelasticity of large lecithin bilayer vesicles.Biophys. J. 35: 637–652.

    Google Scholar 

  • LeNeveu, D. M., Rand, R. P. and Parsegian, V. A. (1976). Measurement of forces between lecithin bilayers.Nature (Lond.) 259:601–603.

    Google Scholar 

  • Llinas, R., Steinberg, I. Z. and Walton, K. (1982). Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse.Biophys. J. 33:323–352.

    Google Scholar 

  • Lutzner, M. A., Lowrie, C. T. and Jordan, H. W. (1967). Giant granules in leukocytes of the beige mouse.J. Hered. 58:299–300.

    Google Scholar 

  • Marra, J. (1986). Direct measurement of the interaction between phosphatidylglycerol bilayers in aqueous electrolyte solutions.Biophys. J. 50:815–825.

    Google Scholar 

  • Martin, F. J. and MacDonald, R. C. (1976). Phospholipid exchange between bilayer membrane vesicles.Biochemistry 15:321–327.

    Google Scholar 

  • Marty, A. and Neher, E. (1983). Tight-seal whole-cell recording. In:Single-Channel Recording (B. Sakmann and E. Neher, Eds.), Plenum Press, New York, Chapter 7, pp. 107–122.

    Google Scholar 

  • Neher, E. and Marty, A. (1982). Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells.Proc. Natl. Acad. Sci. 79:6712–6716.

    Google Scholar 

  • Niles, W. D. and Cohen, F. S. (1978a) Video fluorescence microscopy of vesicle fusion with planar membranes.Biophys. J. 51: 44a.

    Google Scholar 

  • Niles, W. D. and Cohen, F. S. (1987b). Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of contents released.J. Gen. Phys. In press.

  • Parsegian, V. A., Fuller, N. L. and Rand, R. P. (1979). Measured work of deformation and repulsion of lecithin bilayers.Proc. Natl. Acad. Sci. 76:2750–2754.

    Google Scholar 

  • Parsegian, V. A. and Rand, R. P. (1983). Membrane interaction and deformation.Ann. New York Acad. Sci. 416:1–12.

    Google Scholar 

  • Parsegian, V. A., Rand, R. P. and Rau, D. C. (1986). Osmotic stress for the direct measurement of intermolecular forces. In:Methods in Enzymology, Vol. 127,Biomembranes; Protons and Water: Structure and Translocation (L. Packer, Ed.), Academic Press, New York, Chapter 29, pp. 400–416.

    Google Scholar 

  • Parsegian, A. V., Rau, D. and Zimmerberg, J. (1986). Structural transitions induced by osmotic stress. In:Membranes, Metabolism, and Dry Organisms (C. Leopold, Ed.) Cornell University Press, Ithaca, Chapter 18, pp. 306–317.

    Google Scholar 

  • Plattner, H. (1981). Membrane behaviour during exocytosis.5:435–459.

    Google Scholar 

  • Portis, A., Newton, C., Pangborn, W. and Papahadjopolous, D. (1979). Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca-phospholipid complex, synergism with Mg, and inhibition by spectrin.Biochemistry 18:780–790.

    Google Scholar 

  • Rand, R. P., Fuller, N. L. and Lis, L. J. (1900). Myelin swelling and measurement of forces between myelin membranes.Nature (Lond.) 279:258–260.

    Google Scholar 

  • Rand, R. P. and Parsegian, V. A. (1986). Mimicry and mechanism in phospholipid models of membrane fusion.Ann. Rev. Physiol. 48:201–212.

    Google Scholar 

  • Rau, D. C., Lee, B. and Parsegian, V. A. (1984). Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices.Proc. Natl. Acad. Sci. 81:2621–2625.

    Google Scholar 

  • Rau, D. C. and Parsegian, V. A. (1985).Biophys. J. 47:68a.

    Google Scholar 

  • Rau, D. C. and Parsegian, V. A. (1986). Dissection of the solvent entropy change driving molecular assembly.Biophys. J. 49:301a.

    Google Scholar 

  • Schuel, H. (1978). Secretory functions of egg cortical granules in fertilization and development: A critical review.Gamete. Res. 1:299–382.

    Google Scholar 

  • Schwartz, G. J. and Al-Awqati, Q. (1986). Regulation of transepithelial H+ transport by exocytosis and endocytosis.Ann. Rev. Physiol. 48:153–161.

    Google Scholar 

  • Tanford, C. (1973)The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley & Sons, N.Y., pp. 94–111.

    Google Scholar 

  • Wade, J. B. (1986). Role of membrane fusion in hormonal regulation of epithelial transport.Ann. Rev. Physiol. 48:213–223.

    Google Scholar 

  • Walter, A., Steer, C. J. and Blumenthal, R. (1986). Polylysine induces pH-dependent fusion of acidic lipid vesicles: a model for polycation fusion.Biophys. Biochim. Acta 861:319–330.

    Google Scholar 

  • Whitaker, M. and Zimmerberg, J. (1987). Inhibition of exocytosis in sea urchin eggs by polymer solutions.J. Physiol. In press.

  • Wilschut, J. and Hoeckstra, D. Eds. (1987).Cellular Membrane Fusion. Marcel Dekker, NY.

    Google Scholar 

  • Woodbury, D. J. (1986c). Correlation of channel incorporation and content release during fusion of unilamellar vesicles with a planar bilayer.Biophys. J. 49:132a.

    Google Scholar 

  • Zimmerberg, J. (1987). Fusion of phospholipid vesicles to planar phospholipid membranes. In:Cellular Membrane Fusion (J. Wilschut and D. Hoeckstra, Eds.), Marcel Dekker, New York.

    Google Scholar 

  • Zimmerberg, J., Cohen, F. S. and Finkelstein, A. (1980). Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane.J. Gen. Physiol. 75:251–270.

    Google Scholar 

  • Zimmerberg, J., Curran, M., Cohen, F. S. and Brodwick, M. (1986). Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells.Proc. Nat. Acad. Sci. 84:1585–1589.

    Google Scholar 

  • Zimmerberg, J. and Parsegian, V. A. (1987). Water movement during channel opening and closing.J. Bioenergetics and Biomembranes 19:351–358.

    Google Scholar 

  • Zimmerberg, J., Sardet, C. and Epel, D. (1985). Exocytosis of sea urchin egg cortical vesiclesin vitro is retarded by hypersomotic sucrose: kinetics of fusion monitored by quantitative light-scattering microscopy.J. Cell. Biol. 101:2398–2410.

    Google Scholar 

  • Zimmerberg, J. and Whitaker, M. (1985). Irreversible swelling of secretory granules during exocytosis caused by calcium.Nature 315:581–584.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerberg, J. Molecular mechanisms of membrane fusion: Steps during phospholipid and exocytotic membrane fusion. Biosci Rep 7, 251–268 (1987). https://doi.org/10.1007/BF01121447

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01121447

Key Words

Navigation