Skip to main content
Log in

Possible involvement of the phloem sealing system in the acceptance of a plant as host by an aphid

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Possible reasons for the rejection of some lines ofTriticum monococcum (Tm44 and Tm46) by the aphidSitobion avenae were explored. In allT. monococcum lines studied, whether unfavourable (non-host/resistant plant) or favourable (host/susceptible plant), the concentrations of hydroxamic acids, a family of aphid-resistance factors in cereals, were significantly lower than the levels in the favourable host-plantTriticum aestivum cv. Therefore, hydroxamic acids did not account for the host/non-host patterns observed. Phloem sap was collected by stylectomy from young seedlings of favourable and unfavourable plants. In non-aphid-resistant genotypes, the success in stylectomy, the proportion of amputated stylets resulting in long (>1 min) exudations, the average duration of exudation, and the final volume of sap exuded, were higher than in the aphid-resistant genotypes. It is concluded that aphid interference with the phloem sealing system of the plant is a likely mechanism of rejection ofT. monococcum lines Tm44 and Tm46 as hosts byS. avenae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Klingauf F. A. (1988) Host-plant finding and acceptance. In: Aphids, Their Biology, Natural, Enemies and Control, vol. 2B, pp. 209–223, Minks A. K. and Harrewijn P. (eds) Elsevier Science Publishers, Amsterdam

    Google Scholar 

  2. Klingauf F. A. (1988) Feeding, adaptation and excretion. In: Aphids, Their Biology, Natural Enemies and Control, vol. 2B, pp. 225–253, Minks A. K. and Harrewijn P. (eds), Elservier Science Publishers, Amsterdam

    Google Scholar 

  3. Montllor C. B. (1993) Aphid feeding and nutrition. In: Insect-plant Interactions III, pp. 173–196, Bernays E. A. (ed.), CRC, Boca Raton, USA

    Google Scholar 

  4. Tjallingii W. F. (1988) Electronic recording of plant penetration behaviour by aphids. Entomologia Exp. Appl.24: 521–530

    Google Scholar 

  5. Tjallingii W. F. (1988) Electrical recording of stylet penetration activities. In: Aphids, Their Biology, Natural Enemies and Control, vol. 2B, pp. 95–108, Minks A. K. and Harrewijn P. (eds), Elsevier Science Publishers, Amsterdam

    Google Scholar 

  6. Girousse C., Bonnemain J. L., Delrot S., and Bournoville R. (1991) Sugar and amino acid composition of phloem sap ofMedicago sativa — A comparative study of two collecting methods. Plant Physiol. Biochem.29: 41–48

    Google Scholar 

  7. Givovich A., Sandström J., Niemeyer H. M. and Pettersson, J. (1994) Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for performance ofRhopalosiphum padi (L.) (Homoptera: Aphididae). J. Chem. Ecol.20: 1923–1930

    Google Scholar 

  8. van Helden M., Tjallingii W. F. and van Beek T. A. (1994) Phloem sap collection from lettuce (Lactuca sativa L.): methodology and yield. J. Chem. Ecol.20: 3173–3190

    Google Scholar 

  9. King R. W. and Zeevaart J. A. D. (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol.53: 96–103

    Google Scholar 

  10. Unwin F. M. (1978) A versatile high frequency microcautery. Physiol. Entomol.3: 71–73

    Google Scholar 

  11. Tjallingii W. F. and Hogen Esch Th. (1993) Fine structure of the stylet route in plant tissue by some aphid species. Physiol. Entomol.18: 317–328

    Google Scholar 

  12. Eschrich W. (1975) Sealing systems in phloem. In: Encyclopedia of Plant Physiology, vol. 1. Transport in Plants I. Phloem Transport, pp. 39–54, Zimmermann M. H. and Milburn J. A. (eds), Springer Verlag, Berlin

    Google Scholar 

  13. Evert R. F. (1990) Dicotyledons. In: Sieve Elements: Comparative Structure, Induction and Development, pp. 103–137, Behnke H. D. and Sjölund R. D. (eds), Springer, Berlin

    Google Scholar 

  14. Di Pietro J. P., Soster, C., Chaubet B. and Caillaud C. M. (1993) The resistance of different lines ofTriticum species to the aphidSitobion avenae. Bull. International Organisation for Biological Control16: 110–116

    Google Scholar 

  15. Caillaud C. M., Pierre J. S., Chaubet J. P. and Di Pietro J. P. (1995) Analysis of wheat resistance to the cereal aphidSitobion avenae using electrical penetration graphs and flowcharts combined with correspondence analysis. Entomologia Exp. Appl.75: 9–18

    Google Scholar 

  16. Bohidar K., Wratten S. D. and Niemeyer H. M. (1986) Effects of hydroxamic acids on the resistance of wheat to the aphidSitobion avenae. Ann. Appl. Biol.109: 193–198

    Google Scholar 

  17. Niemeyer H. M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the graminae. Phytochemistry27: 3349–3358

    Google Scholar 

  18. Givovich, A. and Niemeyer H. M. (1995) Effect of hydroxamic acids on feeding behaviour and performance of cereal aphids on wheat. Eur. J. Entomol.91: 371–374

    Google Scholar 

  19. Givovich A. and Niemeyer H. M. (1995) Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomologia Exp. Appl.74: 115–119

    Google Scholar 

  20. Girousse C. and Bournoville R. (1994) Role of phloem, sap quality and exudation characteristics on performance of pea aphid grown on lucerne genotypes. Entomologia Exp. Appl.70: 227–235

    Google Scholar 

  21. Caillaud C. M., Dedryver C. A. and Simon J. C. (1994) Development and reproductive potential of the cereal aphidSitobion avenae on resistant wheat lines (Triticum monococcum). Ann. Appl. Biol.125: 219–232

    Google Scholar 

  22. Caillaud C. M., Di Pietro J. P., Chaubert B. and Pierre J. S. (1995) Application of discriminant analysis to electrical penetration graphs of the aphidSitobion avenae feeding on resistant and susceptible wheat. J., Appl. Entomol.119: 103–106

    Google Scholar 

  23. Argandoña, V. H., Luza J. G., Niemeyer H. M. and Corcuera L. J. (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry19: 1665–1668

    Google Scholar 

  24. Lyons P. C., Hipskind J. D., Wood K. V. and Nicholson R. L. (1988) Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatography. J. Agric. Food Chem.36: 57–60

    Google Scholar 

  25. Queirolo C. B., Andreo C. S., Niemeyer H. M. and Corcuera L. J. (1983) Inhibition of ATPase from chloroplasts by an hydroxamic acid from the graminae. Phytochemistry22: 2455–2458

    Google Scholar 

  26. Jernow J. L. and Rosen P. (1975) 2H-1,4-benzoxazin-3(4H)-ones. U.S. Patent 3,862, 180; 8 pp

    Google Scholar 

  27. Niemeyer H. M. (1988) Hydroxamic acids content ofTriticum species. Euphytica37: 289–293

    Google Scholar 

  28. Niemeyer, H. M., Copaja, S. V. and Barria, B. N. (1992) The triticae as sources of hydroxamic acids, secondary metabolites in wheat conferring resistance against aphids. Hereditas116: 295–299

    Google Scholar 

  29. Walsh M. A. and Melaragano J. E. (1981) Structural evidence for plastid inclusions as a possible ‘sealing’ mechanism in the phloem of monocotyledons. J. Exp. Bot.32: 311–320

    Google Scholar 

  30. Eleftheriou E. P. (1984) Sieve-element plastids ofTriticum andAegilops (Poacae). Plant Syst. Evol.145: 119–133

    Google Scholar 

  31. Eleftheriou E. P. (1990) Monocotyledons. In: Sieve Elements: Comparative Structure, Induction and Development, pp. 139–159, Behnke H. D. and Sjölund R. D. (eds), Springer Verlag, Berlin

    Google Scholar 

  32. Toth K. F. and Sjölund R. D. (1994) Monoclonal antibodies against phloem-P-protein from plant tissue cultures. Am. J. Bot.8: 1378–1383

    Google Scholar 

  33. Miles P. W. (1987) Feeding processes of Aphidoidea in relation to effects on their food plants. In: Aphids, Their Biology, Natural Enemies and Control, vol. 2C, pp. 321–339, Minks A. K. and Harrewijn P. (eds), Elsevier Science Publishers, Amsterdam

    Google Scholar 

  34. Campbell B. C. and Dryer D. L. (1985) Host-plant resistance of sorghum: differential hydrolysis of sorghum pectic substances by polysacharases of greenbugbiotypes (Schizaphis graminum, Homoptera Aphididae). Arch. Insect Biochem. Physiol.2: 203–215

    Google Scholar 

  35. Dreyer D. L. and Campbell B. C. (1987) Chemical basis of host-plant resistance to aphids. Plant Cell Environ.10: 353–361

    Google Scholar 

  36. Peng Z. and Miles P. W. (1988) Studies on the salivary physiology of plant bugs: function of the cathecol oxidase of the rose aphid. J. Insect Physiol.34: 1027–1033

    Google Scholar 

  37. Skou J. P. (1985) On the enhanced callose deposition in barley with ml-o powdery mildew resistance genes. Phytopathol. Z.112: 207–216

    Google Scholar 

  38. van Hoof A., Leykam J., Schaeffer H. J. and Walton J. D. (1991) A single beta 1,3-glucanase secreted by the maize pathogenCochliobolus carbonum acts by an exolytic mechanism. Physiol. Molec Plant Pathol.39: 259–267

    Google Scholar 

  39. Brockmann B., Smit R. and Tudizynski P. (1992) Characterization of an extracellular beta 1,3-glucanase ofClaviceps purpurea. Physiol. Molec. Plant Pathol.40: 191–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillaud, C.M., Niemeyer, H.M. Possible involvement of the phloem sealing system in the acceptance of a plant as host by an aphid. Experientia 52, 927–931 (1996). https://doi.org/10.1007/BF01938882

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01938882

Key words

Navigation