Skip to main content
Log in

Transgenic and mutant animal models to study mechanism of protection of red cell genetic defects against malaria

  • Multi-author Reviews
  • Developments in Sickle Cell Anemia Research, Part I
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Malaria, caused by members of the genusPlasmodia, is still the most prevalent parasitic disease in the world. In an attempt to understand genetic factors conferring resistance to malaria, mouse models of thalassemia, sickle trait, and ankyrin and spectrin deficiency were studied during infection with species of malaria infectious to rodents. Although growth ofP. falciparum is not inhibited in thalassemic erythrocytes in culture, mice carrying a β-thalassemia mutation were protected fromPlasmodium chabaudi adami, supporting epidemiologic findings. Transgenic mice expressing βs hemoglobin were also significantly protected from two species of rodent malaria. Importantly, a significant role for the spleen in protection in the βs transgenic mice was found. Finally, mice deficient in spectrin and ankyrin were studied with respect to their ability to support the growth of malaria. It was found that spectrin deficient mice were almost completely refractory toP. chabaudi adami andP. berghei. These models will allow further study of host factors in resistance to malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison, A. C., Protection afforded by the sickle-cell trait against subtertian malaria infection. Br. Med. J.1 (1954) 290–293.

    Google Scholar 

  2. Barker, J. E., Bodine, D. M., and Birkenmeier, C. S., Synthesis of spectrin and its assembly into the red blood cell cytoskeleton of normal and mutant mice, in: Membrane Skeletons and Cytoskeletal-Membrane Associations, pp. 313–324. Ed. B. Crawford, Alan R. Liss, New York, 1986.

    Google Scholar 

  3. Barnwell, J. W., Nichols, M. E., and Rubinstein, P., In vitro evaluation of the role of the Duffy blood group inPlasmodium vivax erythrocyte invasion. J. exp. Med.169 (1989) 1795–1802.

    Article  PubMed  Google Scholar 

  4. Bernstein, S., Inherited hemolytic disease in mice: a review and update. Lab. Anim Sci.30 (1980) 197–205.

    PubMed  Google Scholar 

  5. Bernstein, S. C., Bowman, J. E., and Kaptlue Noche, L., Population studies in Cameroon. Hemoglobin S, glucose-6-phosphate dehydrogenase deficiency and falciparum malaria. Human Hered.30 (1980) 251–258.

    Google Scholar 

  6. Bodine, D. M., Birkenmeier, C. S., and Barker, J. E., Spectrin-deficient hemolytic anemia in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell37 (1984) 721–729.

    Article  PubMed  Google Scholar 

  7. Brockelman, C. R., Wongsattayanont, B., Tan-ariya, P., and Fucharoen, S., Thalassemic erythrocytes inhibit in vitro growth ofPlasmodium falciparum. J. clin. Microbiol.25 (1987) 56–60.

    PubMed  Google Scholar 

  8. Costantini, F., Chada, K., and Magren, J., Correction of murine β-thalassemia by gene transfer into the germ line. Science233 (1986) 1192–1194.

    PubMed  Google Scholar 

  9. Fabry, M. E., Nagel, R. L., Pachnis, A., Suzuka, S. M., Costantini, F. D., High expression of human βs and α-globins in transgenic mice: 1) Hemoglobin composition and hematologic consequences. Proc natl Acad. Sci. USA (1992) in press.

  10. Facer, C. A., Malaria, hereditary elliptocytosis and pyropoikilocytosis. Lancet1 (1989) 897.

    Article  Google Scholar 

  11. Fleming, A. F., Akintunde, A., Attai, E. D. E., Bradley-Moore, A. M., Greenwood, B. M., Bradley, A. K., Kirkwood, B. R., and Gilles, H. M., Malaria and haemoglobin genotype in young northern Nigerian children. Ann. trop. Med. Hyg.79 (1985) 1–5.

    Article  Google Scholar 

  12. Flint, J., Hill, A. V. S., Bowden, D. K., Oppenheimer, S. J., Sill, P. R., Serjeanstson, S. W., Bana-Koiri, J., Bhatia, K., Alpers, M. P., Boyce, A. J., Weatherall, D. J., and Clegg, J. B., High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature321 (1986) 744–750.

    Article  PubMed  Google Scholar 

  13. Friedman, M. J., Erythrocytic mechanism of sickle cell resistance to malaria. Proc. natl Acad. Sci. USA75 (1978) 1994–1997.

    PubMed  Google Scholar 

  14. Friedman, M. J., Oxidant damage mediates variant red cell resistance to malaria. Nature280 (1979) 245–247.

    PubMed  Google Scholar 

  15. Hoffinan, S. L., Nussenzweig, V., Sadoff, J. C., and Nussenzweig, R. S., Progress toward malaria preerythrocytic vaccines. Science252 (1991) 520–521.

    PubMed  Google Scholar 

  16. Howard R. J., and Gilladoga, A. D., Molecular studies related to the pathogenesis of cerebral malaria. Blood74 (1989) 2603–2618.

    PubMed  Google Scholar 

  17. Jensen, J. B., and Trager, W.,Plasmodium falciparum in culture: Use of outdared erythrocytes and description of the candle jar method. J. Parasitol.63 (1977) 883–886.

    PubMed  Google Scholar 

  18. Killick-Kendrick, R., Taxonomy, zoogeography and evolution, in: Rodent Malaria, pp. 1–52. Eds R. Killick-Kendrick and W. Peters. Academic Press, London 1978.

    Google Scholar 

  19. Kolata, G., The search for a malaria vaccine. Science226 (1984) 679–682.

    PubMed  Google Scholar 

  20. Landau, I., and Boulard, Y., Life cycles and morphology, in: Rodent Malaria, pp. 53–84. Eds R. Killick-Kendrick and W. Peters. Academic Press, London 1978.

    Google Scholar 

  21. Livingston, F. G., Malaria and human polymorphisms. A. Rev. Genet.5 (1971) 33–64.

    Article  Google Scholar 

  22. Liu, S.-C., Palek, J., Prchal, J., and Castleberry, P. P., Altered spectrin dimer-dimer association and instability of erthrocyte membrane skeleton in hereditary pyropoikilocytosis. J. clin. Invest.68 (1981) 597–605.

    PubMed  Google Scholar 

  23. Luce, S. A., and Miller, L. H.,Plasmodium falciparum malaria. Ultrastructure of parasitized erythrocytes in cardiac vessels. Am. J. trop. Med. Hyg.20 (1971) 655–660.

    PubMed  Google Scholar 

  24. Luzzatto, L., Nwachuku-Jarrett, E. S., and Reddy S., Increased sickling of parasitized erythrocytes as mechanisms of resistance against malaria in sickle cell trait. Lancet1 (1970) 319–322.

    Article  PubMed  Google Scholar 

  25. Luzzi, G. A., Merry, A. H., Newbold, C. I., Marsh, K., Pasvol, G., and Weatherall, D. J., Surface antigen expression ofPlasmodium falciparum-infected erythrocytes is modified in α-and β-thalassemia. J. exp. Med.173 (1991) 785–791.

    Article  PubMed  Google Scholar 

  26. Macpherson, G. G., Warrell, M. J., White, N. J., Looarreesuwan, S., and Warrell, D. A., Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Path.119 (1985) 385–401.

    PubMed  Google Scholar 

  27. Miller, L. H., and Carter, R., Innate resistance in malaria. Exptl Parasit.40 (1976) 132–146.

    Article  Google Scholar 

  28. Nagel, R. L., and Fleming, A. F., The genetic epidemiology of the βs gene, in: Bailliere's Clinical Haematology, Vol. 5, No. 2. pp. 331–365. Ed. A. F. Fleming. Saunders, London 1992.

    Google Scholar 

  29. Nagel, R. L., and Roth, E. F., Malaria and red cell genetic defects. Blood74 (1989) 1213–1221.

    PubMed  Google Scholar 

  30. Pasvol, G., Weatherall, D. J., and Wilson, R. J. M., Cellular mechanism for the protective effect of haemoglobin S againstP. falciparum malaria. Nature274 (1978) 701–703.

    PubMed  Google Scholar 

  31. Pasvol, G., Weatherall, D. J., and Wilson, R. J. M., Effects of foetal haemoglobin on susceptibility of red cells toPlasmodium falciparum. Nature270 (1977) 171–173.

    PubMed  Google Scholar 

  32. Perkins, M. M., Binding of glycophorins toPlasmodium falciparum merozoites. Molec. Biochem. Parasit.10 (1984) 67–78.

    Article  Google Scholar 

  33. Rachmilewitz, E. A., Treves, A., and Treves, A. J., Susceptibility of thalassemic red blood cells to phagocytosis by human macrophages in vitro. Ann. N.Y. Acad. Sci.344 (1979) 314–321.

    Google Scholar 

  34. Raventos-Suarez, C., Kaul, D. K., Macaluso, F., and Nagel, R. L., Membrane knobs are required for the microcirculatory obstruction induced byPlasmodium falciparum-infected erythrocytes. Proc. natl Acad. Sci. USA82 (1985) 3829–3833.

    PubMed  Google Scholar 

  35. Roth, E. F. Jr., Friedman, M., Ueda, Y., Tellez, I., Trager, W., and Nagel R. L., Sickling rates of human AS red cells infected in vitro withPlasmodium falciparum malaria. Science202 (1978) 650–652.

    PubMed  Google Scholar 

  36. Roth, E. F., Jr., Raventos-Suarez, C., Rinaldi, A., and Nagel, R. L., Glucose-6-phosphate dehydrogenase deficiency inhibits in vitro growth ofPlasmodium falciparum. Proc. natl Acad. Sci. USA80 (1983) 298–299.

    PubMed  Google Scholar 

  37. Roth, E. F., Shear, H. L., Costantini, F., Tanowitz, H. B., and Nagel, R. L., Malaria in β-thalassemic mice and the effects of the transgenic human β-globin gene and splenectomy. J. Lab. clin. Med.111 (1988) 35–41.

    PubMed  Google Scholar 

  38. Schulman, S., Roth, E. F., Cheng, B., Schwartz, R. S., Rybicki, A. C., Sussman, I. I., Wong, M., Wang, W., and Nagel, R. L., Growth ofPlasmodium falciparum in human erythrocytes containing abnormal membrane proteins. Proc. natl Acad. Sci.87 (1990) 7339–7343.

    PubMed  Google Scholar 

  39. Shear, H. L., Roth, E. F. Jr., Ng, C., and Nagel, R. L., Resistance to malaria in ankyrin and spectrin deficient mice. Br. J. Haemat.78 (1991) 555–560.

    Google Scholar 

  40. Shear, H. L., Roth, E. F. Jr., Fabry, M. E., Costantini, F. D., Pachnis, A., Jood, A., and Nagel, R. L., Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. Blood (1993) in press.

  41. Skow, L. C., Burkhart, B. A., Johnson, F. M., Popp, R. A., Popp, D. M., Goldberg, S. Z., Anderson, W. F., Barnett, L. B., and Lewis, S. E., Amouse model for β-thalassemia. Cell34 (1983) 1043–1052.

    Article  PubMed  Google Scholar 

  42. Trager, W., Rudzinska, M. A., and Bradbury, P. C., The fine structure ofPlasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bull. WHO35 (1966) 883–885.

    PubMed  Google Scholar 

  43. Wilcox, M., Bjorkman, A., Brohult, J., Pehrson, P. O., Rombi L., and Bengtsson, E., Ann. trop. Med. Parasit.77 (1983) 239–246.

    PubMed  Google Scholar 

  44. Yuthavong, Y., Bunyaratvej, A., and Kamchonwongpaisan, S., Increased susceptibility of malaria-infected variant erythrocytes to the mononuclear phagocyte system. Blood Cells16 (1990) 591–597.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shear, H.L. Transgenic and mutant animal models to study mechanism of protection of red cell genetic defects against malaria. Experientia 49, 37–42 (1993). https://doi.org/10.1007/BF01928786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01928786

Key words

Navigation