Skip to main content
Log in

The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arcangeli A, Pillozzi S, Becchetti A (2012) Targeting ion channels in Leukemias: a new challenge for treatment. Curr Med Chem 19:683–696

    Article  CAS  PubMed  Google Scholar 

  2. Barry MA, Eastman A (1993) Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch Biochem Biophys 300:440–450. doi:10.1006/abbi.1993.1060

    Article  CAS  PubMed  Google Scholar 

  3. Belaud-Rotureau MA, Leducq N, De Gannes FMP, Diolez P, Lacoste L, Lacombe F, Bernard P, Belloc F (2000) Early transitory rise in intracellular pH leads to Bax conformation change during ceramide-induced apoptosis. Apoptosis 5:551–560. doi:10.1023/A:1009693630664

    Article  CAS  PubMed  Google Scholar 

  4. Bortner CD, Gómez-Angelats M, Cidlowski JA (2001) Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem 276:4304–4314. doi:10.1074/jbc.M005171200

    Article  CAS  PubMed  Google Scholar 

  5. Byerly LOU, Meech R, Moody WJ (1984) Rapidly activating hydrogen ion currents in perfused neurones of the snail, LYMNAEA STAGNALIS. J Physiol 351:199–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B, Cherny VV, Morgan D, Gascoyne RD, Vigorito E, DeCoursey TE, MacLennan ICM, Dyer MJS (2010) HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 11:265–272. doi:10.1038/ni.1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. El Chemaly A, Guinamard R, Demion M, Fares N, Jebara V, Faivre JF, Bois P (2006) A voltage-activated proton current in human cardiac fibroblasts. Biochem Biophys Res Commun 340:512–516. doi:10.1016/j.bbrc.2005.12.038

    Article  CAS  PubMed  Google Scholar 

  8. El Chemaly A, Okochi Y, Sasaki M, Arnaudeau S, Okamura Y, Demaurex N (2010) VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J Exp Med 207:129–139. doi:10.1084/jem.20091837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cherny VV, Murphy R, Sokolov V, Levis RA, Decoursey TE (2003) Properties of single voltage-gated proton channels in human eosinophils estimated by noise analysis and by direct measurement. J Gen Physiol. doi:10.1085/jgp.200308813

    PubMed  PubMed Central  Google Scholar 

  10. Chimienti F, Seve M, Richard S, Mathieu J, Favier A (2001) Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 62:51–62. doi:10.1016/S0006-2952(01)00624-4

    Article  CAS  PubMed  Google Scholar 

  11. Chow S, Hedley D (1997) Flow cytometric measurement of intracellular pH. Curr Protoc Cytom 9

  12. Counillon L, Bouret Y, Marchiq I, Pouysségur J (2016) Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism. BBA - Mol Cell Res. doi:10.1016/j.bbamcr.2016.02.018

    Google Scholar 

  13. DeCoursey TE (2008) Voltage-gated proton channels. Cell Mol Life Sci 65:2554–2573. doi:10.1007/s00018-008-8056-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DeCoursey TE, Cherny VV (1993) Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J 65:1590–1598. doi:10.1016/S0006-3495(93)81198-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisner DA, Kenning NA, Neill SCO, Pocock G, Richards CD, Valdeolmillos M (1989) A novel method for absolute calibration of intracellular pH indicators. Pflugers. Arch Eur J Physiol 413:553–558. doi:10.1007/BF00594188

    Article  CAS  Google Scholar 

  16. Famulski KS, Macdonald D, Paterson MC, Sikora E (1999) Activation of a low pH-dependent nuclease by apoptotic agents. Cell Death Differ 6:281–289. doi:10.1038/sj.cdd.4400495

    Article  CAS  PubMed  Google Scholar 

  17. Franck P (1996) Measurement of intracellular pH in cultured cells by flow cytometry with BCECF-AM. J Biotechnol 46:187–195. doi:10.1016/0168-1656(95)00189-1

    Article  CAS  PubMed  Google Scholar 

  18. Furlong IJ, Ascaso R, Lopez Rivas A, Collins MK (1997) Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J Cell Sci 110:653–661

    CAS  PubMed  Google Scholar 

  19. Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST, van MHJ O (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  20. Gonzalez C, Rebolledo S, Perez ME, Larsson HP (2013) Molecular mechanism of voltage sensing in voltage-gated proton channels. J Gen Physiol 141:275–285. doi:10.1085/jgp.201210857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gordienko DV, Tare M, Parveen S, Fenech CJ, Robinson C, Bolton TB (1996) Voltage-activated proton current in eosinophils from human blood. J Physiol 496:299–316. doi:10.1113/jphysiol.1996.sp021686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottlieb R a, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci U S A 93:654–658. doi:10.1073/pnas.93.2.654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch Eur J Physiol. Arch Eur J Physiol 391:85–100. doi:10.1007/BF00656997

    Article  CAS  Google Scholar 

  24. Hong L, Kim IH, Tombola F (2014) Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives. Proc Natl Acad Sci U S A 111:9971–9976. doi:10.1073/pnas.1324012111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huber KL, Hardy JA (2012) Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci 21:1056–1065. doi:10.1002/pro.2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiménez Del Río M, Vélez-Pardo C (2004) Transition metal-induced apoptosis in lymphocytes via hydroxyl radical generation, mitochondria dysfunction, and caspase-3 activation: an in vitro model for neurodegeneration. Arch Med Res 35:185–193. doi:10.1016/j.arcmed.2004.01.001

    Article  PubMed  Google Scholar 

  27. Kapus A, Romanek R, Grinstein S (1994) Arachidonic acid stimulates the plasma membrane H+ conductance of macrophages. J Biol Chem 269:4736–4745

    CAS  PubMed  Google Scholar 

  28. Kim J, Bae HAER, Park BS, Lee JEM, Ahn HEEB, Rho JHEEH, Yoo KW, Park WOOC, Rho SHAEH, Yoon HEES, Yoo YH (2003) Early mitochondrial hyperpolarization and intracellular alkalinization in lactacystin-induced apoptosis of retinal pigment epithelial cells. J Pharmacol Exp Ther 305:474–481. doi:10.1124/jpet.102.047811

    Article  CAS  PubMed  Google Scholar 

  29. Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930. doi:10.1158/0008-5472.CAN-06-1501

    Article  CAS  PubMed  Google Scholar 

  30. Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99:12825–12830. doi:10.1073/pnas.202474099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961. doi:10.1038/sj.cdd.4401466

    Article  CAS  PubMed  Google Scholar 

  32. Lang F, Madlung J, Bock J, Lükewille U, Kaltenbach S, Lang KS, Belka C, Wagner CA, Lang HJ, Gulbins E, Lepple-Wienhues A (2000) Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation. Pflügers Arch - Eur J Physiol 440:902–907. doi:10.1007/s004240000358

    Article  CAS  Google Scholar 

  33. Levine AP, Duchen MR, De Villiers S, Rich PR, Segal AW (2015) Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity. PLoS One 10:1–20. doi:10.1371/journal.pone.0125906

    Google Scholar 

  34. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y (2010) Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140:327–337. doi:10.1016/j.cell.2009.12.053

    Article  CAS  PubMed  Google Scholar 

  35. Liu D, Martino G, Thangaraju M, Sharma M, Halwani F, Shen SH, Patel YC, Srikant CB (2000) Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J Biol Chem 275:9244–9250. doi:10.1074/jbc.275.13.9244

    Article  CAS  PubMed  Google Scholar 

  36. Marches R, Vitetta ES, Uhr JW (2001) A role for intracellular pH in membrane IgM-mediated cell death of human B lymphomas. Proc Natl Acad Sci U S A 98:3434–3439. doi:10.1073/pnas.061028998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325. doi:10.1038/35014006

    Article  CAS  PubMed  Google Scholar 

  38. Matsuyama S, Reed JC (2000) Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7:1155–1165. doi:10.1038/sj.cdd.4400779

    Article  CAS  PubMed  Google Scholar 

  39. Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH, DeCoursey TE (2007) Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity. J Physiol 579:327–344. doi:10.1113/jphysiol.2006.124248

    Article  CAS  PubMed  Google Scholar 

  40. Murphy R, Cherny VV, Morgan D, DeCoursey TE (2005) Voltage-gated proton channels help regulate pHi in rat alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 288:L398–L408. doi:10.1152/ajplung.00299.2004

    Article  CAS  PubMed  Google Scholar 

  41. Musset B, Decoursey T (2012) Biophysical properties of the voltage-gated proton channel HV1. Wiley Interdiscip Rev Membr Transp Signal 1:605–620. doi:10.1002/wmts.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Musset B, Smith SME, Rajan S, Morgan D, Cherny VV, DeCoursey TE (2011) Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature 480:273–277. doi:10.1038/nature10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nolte F, Friedrich O, Rojewski M, Fink RH a, Schrezenmeier H, Körper S (2004) Depolarisation of the plasma membrane in the arsenic trioxide (As2O3)-and anti-CD95-induced apoptosis in myeloid cells. FEBS Lett 578:85–89. doi:10.1016/j.febslet.2004.10.075

    Article  CAS  PubMed  Google Scholar 

  44. Nordström T, Rotstein OD, Romanek R, Asotra S, Heersche JNM, Manolson MF, Brisseau GF, Grinstein S (1995) Regulation of cytoplasmic pH in osteoclasts: contribution of proton pumps and a proton-selective conductance. J Biol Chem 270:2203–2212. doi:10.1074/jbc.270.5.2203

    Article  PubMed  Google Scholar 

  45. Ollig J, Kloubert V, Weßels I, Haase H, Rink L (2016) Parameters influencing zinc in experimental systems in vivo and in vitro. Metals (Basel) 6(71). doi:10.3390/met6030071

  46. Petheo GL, Orient A, Baráth M, Kovács I, Réthi B, Lányi Á, Rajki A, Rajnavölgyi É, Geiszt M (2010) Molecular and functional characterization of Hv1 proton channel in human granulocytes. PLoS One. doi:10.1371/journal.pone.0014081

    PubMed  PubMed Central  Google Scholar 

  47. Qiu F, Rebolledo S, Gonzalez C, Larsson HP (2013) Subunit interactions during cooperative opening of voltage-gated proton channels. Neuron 77:288–298. doi:10.1016/j.neuron.2012.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE (2009) Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci U S A 106:7642–7647. doi:10.1073/pnas.0902761106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ribeiro-Silva L, Queiroz FO, da Silva AMB, Hirata AE, Arcisio-Miranda M (2016) Voltage-gated proton channels in human glioblastoma multiforme cells. ACS Chem Neurosci acschemneuro 6b00083. doi:10.1021/acschemneuro.6b00083

  50. Rich IN, Worthington-White D, Garden O a, Musk P (2000) Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na(+)/H(+) exchanger. Blood 95:1427–1434

    CAS  PubMed  Google Scholar 

  51. Roy S, Bayly CI, Gareau Y, Houtzager VM, Kargman S, Keen SL, Rowland K, Seiden IM, Thornberry N a, Nicholson DW (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc Natl Acad Sci U S A 98:6132–6137. doi:10.1073/pnas.111085198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sasaki M, Tojo A, Okochi Y, Miyawaki N, Kamimura D, Yamaguchi A, Murakami M, Okamura Y (2013) Autoimmune disorder phenotypes in Hvcn1-deficient mice. Biochem J 450:295–301. doi:10.1042/BJ20121188

    Article  CAS  PubMed  Google Scholar 

  53. Schilling T, Gratopp A, DeCoursey TE, Eder C (2002) Voltage-activated proton currents in human lymphocytes. J Physiol 545:93–105. doi:10.1113/jphysiol.2002.028878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Segal MS, Beem E (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol Cell Physiol 281:C1196–C1204

    CAS  PubMed  Google Scholar 

  55. Seredenina T, Demaurex N, Krause K (2014) Voltage-gated proton channels as novel drug targets: from NADPH oxidase regulation to sperm biology. Antioxid Redox Signal 0:1–63. doi:10.1089/ars.2013.5806

    Google Scholar 

  56. Shanmugam M, McBrayer SK, Rosen ST (2009) Targeting the Warburg effect in hematological malignancies: from PET to therapy. Curr Opin Oncol 21:531–536. doi:10.1097/CCO.0b013e32832f57ec

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simchowitz L, Cragoe EJ Jr (1987) Intracellular acidification-induced alkali metal cation/H+ exchange in human neutrophils. JGenPhysiol 90:737–762. doi:10.1085/jgp.90.5.737

    CAS  Google Scholar 

  58. Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcìa AG, Harguindey S, Fais S (2015) Proton channels and exchangers in cancer. Biochim Biophys Acta - Biomembr 1848:2715–2726. doi:10.1016/j.bbamem.2014.10.015

    Article  CAS  Google Scholar 

  59. Tafani M, Cohn JA, Karpinich NO, Rothman RJ, Russo MA, Farber JL (2002) Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-α. J Biol Chem 277:49569–49576. doi:10.1074/jbc.M208915200

    Article  CAS  PubMed  Google Scholar 

  60. Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299:826–828. doi:10.1038/299826a0

    Article  CAS  PubMed  Google Scholar 

  61. Velázquez-Delgado EM, Hardy JA (2012) Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem 287:36000–36011. doi:10.1074/jbc.M112.397752

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Li SJ, Pan J, Che Y, Yin J, Zhao Q (2011) Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis. Biochem Biophys Res Commun 412:353–359. doi:10.1016/j.bbrc.2011.07.102

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Li SJ, Wu X, Che Y, Li Q (2012) Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem 287:13877–13888. doi:10.1074/jbc.M112.345280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Wu X, Li Q, Zhang S, Li SJ (2013) Human voltage-gated proton channel Hv1: a new potential biomarker for diagnosis and prognosis of colorectal cancer. PLoS One. doi:10.1371/journal.pone.0070550

    Google Scholar 

  65. Wang Y, Zhang S, Li SJ (2013) Zn2+ induces apoptosis in human highly metastatic SHG-44 glioma cells, through inhibiting activity of the voltage-gated proton channel Hv1. Biochem Biophys Res Commun 438:312–317. doi:10.1016/j.bbrc.2013.07.067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Angel Flores, Ms. Julia De Santis, and Mr. Leandro Diaz Zegarra for their technical assistance. This study was financially supported by grant 11X652 Universidad Nacional de La Plata to Verónica Milesi, Fondecyt grant 1160261 to Carlos González León, PICT 2014-0603 to Pedro Martín, and PICT 2012-1772 to Guillermo Docena from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Martín.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 213 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asuaje, A., Smaldini, P., Martín, P. et al. The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch - Eur J Physiol 469, 251–261 (2017). https://doi.org/10.1007/s00424-016-1928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1928-0

Keywords

Navigation