Skip to main content

Advertisement

Log in

Role of protein kinase activity in apoptosis

  • Multi-author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The transmission of signals from the plasma membrane to the nucleus involves a number of different pathways all of which have in common protein modification. The modification is primarily in the form of phosphorylation which leads to the activation of a series of protein kinases. It is now evident that these pathways are common to stimuli that lead to mitogenic and apoptotic responses. Even the same stimuli under different physiological conditions can cause either cell proliferation or apoptosis. Activation of specific protein kinases can in some circumstances protect against cell death, while in others it protects the cell against apoptosis. Some of the pathways involved lead to activation of transcription factors and the subsequent induction of genes involved in the process of cell death or proliferation. In other cases, such as for the tumour suppressor gene product p53, activation may be initiated both at the level of gene expression or through pre-existing proteins. Yet in others, while the initial steps in the pathway are ill-defined, it is clear that downstream activation of a series of cysteine proteases is instrumental in pushing the cell towards apoptosis. In this report we review the involvement of protein kinases at several different levels in the control of cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Cohen J. J. and Duke R. C. (1984) Glucocorticoid activation of a calcium-dependent endonucease in thymocyte nuclei leads to cell death. J. Immunol.132: 38–42

    PubMed  Google Scholar 

  2. Montpetit M. L., Lawless K. R. and Tenniswood M. (1986) Androgen repressed messages in the rat ventral prostate. Prostate8: 25–36

    PubMed  Google Scholar 

  3. Wyllie A. H., Morris R. G., Smith A. L. and Dunlop D. (1984) Chromatin cleavage in apoptosis: association with condensed morphology and dependence on macromolecular synthesis. J. Pathol.142: 67–77

    Article  PubMed  Google Scholar 

  4. Duke R. C. and Cohen J. J. (1986) IL-2 addiction: with-drawal of growth factor activates a suicide program in dependent T cells. Lymphokine Res.5: 289–299

    PubMed  Google Scholar 

  5. Garcia I., Martinou I., Tsujimoto Y. and Martinou J. C. (1992) Prevention of programmed cell death of sympathetic neurons by thebcl-2 proto-oncogene. Science258: 302–304

    PubMed  Google Scholar 

  6. Tewari M., Quan L., T. O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S. and Dixit V. M. (1995) Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell81: 801–809

    Article  PubMed  Google Scholar 

  7. Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J., Elliston K. O., Ayala J. M., Casano F. J., Chin J., Ding G. J. F., Egger L.A., Gaffney E. P., Limjuco G., Palyha O. C., Raju S. M., Rolando A. M., Salley J. P., Yamin T. T., Lee T. D., Shively J. E., MacCross M., Mumford R. A., Schmidt J. A. and Tocci M. J. (1992) A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature356: 768–774

    Article  PubMed  Google Scholar 

  8. Haldar S., Jena N. and Croce G. M. (1995) Inactivation of Bcl-2 by phosphorylation. Proc. Natl Acad. Sci. USA92: 4507–4511

    PubMed  Google Scholar 

  9. Hunter T. (1987) A thousand and one protein kinases. Cell50: 823–829

    Article  PubMed  Google Scholar 

  10. Nishizuka Y. (1992) Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science258: 607–614

    PubMed  Google Scholar 

  11. Vaux D. L., Cory S. and Adams J. M. (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates withc-myc to immortalize pre-B cells. Nature335: 440–442

    Article  PubMed  Google Scholar 

  12. Wyllie A. H., Kerr J. F. R. and Currie A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol.68: 251–306

    PubMed  Google Scholar 

  13. Henkart P. A. (1996) ICE family proteases: mediators of all apoptotic cell death? Immunity4: 195–201

    Article  PubMed  Google Scholar 

  14. Casciola-Rosen L. A., Miller D. K., Anhalt G. J. and Rosen A. (1994) Specific cleavage of the 70 kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem.269: 39757–39760

    Google Scholar 

  15. Fernandes-Alnemri T., Litwack G. and Alnemri E. S. (1995) MCH2, a new member of the apoptoticCed-3/ICE cysteine protease gene family. Cancer Res.55: 2737–2742

    PubMed  Google Scholar 

  16. Irmler M., Hertig S., MacDonald R. H., Sadoul R., Becherer J. D., Proudfoot A., Solari R. and Tschopp J. (1995) Granzyme A is an interleukin 1β-converting enzyme. J. Exp. Med.181: 1917–1922

    Article  PubMed  Google Scholar 

  17. Waterhouse N., Kumar S., Song Q.,Strike P., Sparrow L., Dreyfuss G., Alnemri E. S., Litwack, G., Lavin M. and Watters D. (1996) Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of ICE-like proteases in apoptosis. J. Biol. Chem. in press.

  18. Kumar S., Kinoshita M., Noda M., Copeland N. G. and Jenkins N. A. (1994) Induction of apoptosis by the mouseNedd2 gene, which encodes a protein similar to the product of theCaenorhabditis elegans cell death geneced-3 and the mammalian IL-1β-converting enzyme. Genes Dev.8: 1613–1626

    PubMed  Google Scholar 

  19. Kyriakis J. M. (1994) The stress-activated protein kinase subfamily ofc-Jun kinases. Nature369: 156–160

    Article  PubMed  Google Scholar 

  20. Lazebnik Y. A., Kaufmann S. H., Desmoyners S., Poirier G. G. and Earnshaw W. C. (1994) Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature371: 346–347

    Article  PubMed  Google Scholar 

  21. Lazebnik Y. A., Takahashi A., Moir R. D., Goldman R. D., Poirier G. G., Kaufmann S. H. and Earnshaw W. C. (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl Acad. Sci. USA92: 9042–9046

    PubMed  Google Scholar 

  22. Kumar S. and Lavin M. F. (1996) The ICE family of cysteine proteases as effectors of cell death. Cell Death Diff. (in press)

  23. Smyth M. J. and Trapani J. A. (1995) Granzymes: exogenous proteinases that induced target cell apoptosis. Immunol. Today16: 202–206

    Article  PubMed  Google Scholar 

  24. Tschopp J. and Nabholz M. (1990) Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu. Rev. Immunol.8: 279–302

    PubMed  Google Scholar 

  25. Yuan J., Shaham S., Ledoux S., Ellis H. and Horvitz H. R. (1993) TheC. elegans cell death geneced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell72: 641–652

    Article  Google Scholar 

  26. Faucheu C., Diu A., Chan A. W., Blanchat A.-M., Miossec C., Herve F., Collard-Dutilleul V., Gu Y., Aldape R. A., Lippke J. A., Rocher C., Su M.S-S., Livinston D. J., Hercend T. and Lalanne J.-L. (1995) A novel human protease similar to the interleukin-1β converting enzyme induces apoptosis in transfected cells. EMBO J.14: 1914–1922

    PubMed  Google Scholar 

  27. Darmon A. J., Nicholson R. C. and Bleackley R. C. (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell derived granzyme B. Nature377: 446–448

    Article  PubMed  Google Scholar 

  28. Sarin A., Adams D. H. and Henkart P. A. (1993) Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J. Exp. Med.178: 1693–1700

    Article  PubMed  Google Scholar 

  29. Clarke P. G. H. (1990) Programmed cell death: morphological diversity and multiple mechanisms. Anal. Embriol.181: 195–213

    Google Scholar 

  30. Cohen J. J. (1991) Programmed cell death in the immune system. Adv. Immunol.50: 55–85

    PubMed  Google Scholar 

  31. Ellis R. E., Yuan J. and Horvitz H. R. (1991) Mechanisms and functions of cell death. Annu. Rev. Cell Biol.9: 663–698

    Article  Google Scholar 

  32. Takata M., Homma Y. and Kurosaki T. (1995) Requirement of phospholipase C-γ2 activation in surface immunoglobulin M-induced B cell apoptosis. J. Exp. Med.182: 907–914

    Article  PubMed  Google Scholar 

  33. Uckun F. M., Tuel-Ahlgren L., Song C. W., Waddick K. Myers D. E., Kirihara J., Ledbetter J. A. and Schieven G. L. (1992) Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocytes precursors, triggering apoptosis and clonogenic cell death. Proc. Natl Acad. Sci. USA89: 9005–9009

    PubMed  Google Scholar 

  34. Xia Z., Dickens M., Raingenaud J., Davis R. J. and Greenberg M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270: 1326–1331

    PubMed  Google Scholar 

  35. Bergamaschi G., Rosti V., Danova M., Ponchio L., Lucotti C. and Cazzola M. (1993) Inhibitors of tyrosine phosphorylation induce apoptosis in human leukemic cell lines. Leukemia7: 2012–2018

    PubMed  Google Scholar 

  36. Otani H., Erdos M. and Leonard W. J. (1993) Tyrosine kinase(s) regulate apoptosis andbcl-2 expression in a growth factor-dependent cell line. J. Biol. Chem.268: 22733–22736

    PubMed  Google Scholar 

  37. Manabe A., Yi T., Kumagai M. and Campana D. (1993) Use of stroma-supported cultures of leukemic cells to assess antileukemic drugs. I. Cytotoxicity of interferon alpha in acute lymphoblastic leukemia. Leukemia7: 1990–1995

    PubMed  Google Scholar 

  38. Yao X. R. and Scott D. W. (1993) Expression of protein tyrosine kinases in the Ig complex of anti-mu-sensitive and anti-mu-resistent B cell lymphomas: role of the p55blk kinase in signaling growth arrest and apoptosis. Immunol. Rev.132: 163–186

    PubMed  Google Scholar 

  39. Duke R. C., Chervenak R. and Cohen J.J. (1983) Endogenous endonuclease induced DNA fragmentation: an early event in cell mediated cytolysis. Proc. Natl Acad. Sci. USA80: 6361–6365

    PubMed  Google Scholar 

  40. Martin S. J. and Cotter T. G. (1991) Ultraviolet-B-irradiation of human leukemia HL-60 cells in vitro induces apoptosis. Int. J. Radiat. Biol.59: 1001–1016

    PubMed  Google Scholar 

  41. Nakajima H., Golstein P. and Henkart P. A. (1995) The target cell nucleus is not required for cell-mediated granzyme or Fas-based cytotoxicity. J. Exp. Med.181: 1905–1909

    Article  PubMed  Google Scholar 

  42. Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizake Y. and Jacobson M. D. (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science262: 695–700

    PubMed  Google Scholar 

  43. Sellins K. S. and Cohen J. J. (1991) Hyperthermia induces apoptosis in thymocytes. Radiat. Res.126: 88–95

    PubMed  Google Scholar 

  44. Cohen J. J., Duke R. C., Chervenak R., Sellins K. S. and Olson L. K. (1985) DNA fragmentation in targets of CTL: an example of programmed cell death in the immune system. Adv. Exp. Med. Biol.184: 493–508

    PubMed  Google Scholar 

  45. McConkey D. J., Hartzell P., Duddy S. K., Hakansson H. and Orrenius S. (1988) 2,3,7,8-Tetracholor-dibenzo-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science242: 256–259

    PubMed  Google Scholar 

  46. Chang M., Bramhall J., Graves S., Bonavida B. and Wisnieski B. J. (1989) Internucleosomal DNA cleavage precedes diptheria toxin-induced cytolysis. J. Biol. Chem.264: 15261–15267

    PubMed  Google Scholar 

  47. Kelley L. L., Koury M. J. and Bondurant M. C. (1992) Regulation of programmed death in erythroid progenitor cells by erythropoietin: effect of calcium and of protein and RNA synthesis. J. Cell. Physiol.151: 487–496

    Article  PubMed  Google Scholar 

  48. Baxter G. D. and Lavin M. F. (1992) Specific protein dephosphorylation in apoptosis induced by ionizing radiation and heat-shock in human lymphoid cells. J. Immunol.148: 1949–1954

    PubMed  Google Scholar 

  49. Baxter G. D., Collins R. J., Harmon B. V., Kumar S., Prentice R. L., Smith P. J. and Lavin M. F. (1989) Cell death by apoptosis in acute leukaemia. J. Pathol.158: 123–129

    Article  PubMed  Google Scholar 

  50. Collins R. J., Harmon B. V., Souvlis T., Pope J. H. and Kerr J. F. R. (1991) Effects of cycloheximide on B-chronic lymphocytic leukaemia and normal lymphocytes in vitro: induction of apoptosis. Br. J. Cancer64: 518–522

    PubMed  Google Scholar 

  51. Martin S. J., Lennon S. V., Bonham A. M., and Cotter T. G. (1990) Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J. Immunol.145: 1859–1867

    PubMed  Google Scholar 

  52. Kaufmann S. W. (1989) Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin and other cytotoxic anticancer drugs: a cautionary note. Cancer Res.49: 5870–5878

    PubMed  Google Scholar 

  53. Nazareth L. V., Harbour D. V. and Thompson E. B. (1991) Mapping the human glucocorticoid receptor for leukemic cell death. J. Biol. Chem.266: 12976–12980

    PubMed  Google Scholar 

  54. Song Q., Lees-Miller S. P., Kumar S., Zhang N., Chan D. W., Smith G. C. M., Jackson S. P., Alnemri E. S., Litwack G. and Lavin M. F. (1996) DNA-dependent protein kinase catalytic subunit: a target for ICE-like protease in apoptosis. EMBO J.15: 3238–3246

    PubMed  Google Scholar 

  55. Grupp S. A., Mitchell R. N., Schreiber K. L., McKean D. J. and Abbas A. K. (1995) Molecular mechanisms that control expression of the B lymphocyte antigen receptor complex. J. Exp. Med.181: 161–168

    Article  PubMed  Google Scholar 

  56. Kapeller R. and Cantley L. C. (1994) Phosphatidylinositol 3-kinase. BioEssays16: 565–576

    Article  PubMed  Google Scholar 

  57. Ohoka Y., Nakai Y., Mukai M. and Iwata M. (1993) Okadaic acid inhibits glucocorticoid-induced apoptosis in T cell hybridomas at its late stage. Biochem. Biophys. Res. Commun.197: 916–921

    Article  PubMed  Google Scholar 

  58. Dunigan D. D. and Madlener J. C. (1995) Serine/threonine protein phosphatase is required for tobacco mosaic virus-mediated programmed cell death. Virology207: 460–466

    Article  PubMed  Google Scholar 

  59. Boe R., Gjertsen B. T., Doskeland S. O. and Vintermyr O. K. (1995) 8-chloro-cAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line. Br. J. Cancer72: 1151–1159

    PubMed  Google Scholar 

  60. Gjertsen B. T., Vressey L. L., Ruchaud S., Houge G., Lanotte M. and Doskeland S. O. (1994) Multiple apoptotic death types triggered through activation of separate pathways by cAMP and inhibitors of protein phosphatases in one (IPC leukemia) cell line. J. Cell. Sci.107: 3363–3377

    PubMed  Google Scholar 

  61. Kiguchi K., Glesne D., Chubb C. H., Fujiki H. and Huberman E. (1994) Differential induction of apoptosis in human breast tumour cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Cell Growth Diff.5: 995–1004

    PubMed  Google Scholar 

  62. Lerga A., Belandia B., Delgado M. D., Cuadrado M. A., Richard C., Ortiz J. M., Martin-Perez J. and Leon J. (1995) Down-regulation ofc-myc andmax genes is associated with inhibition of protein phosphatase 2A in K562 human leukemia cells. Biochem. Biophys. Res. Commun.215: 889–895

    Article  PubMed  Google Scholar 

  63. Ishida Y., Furukawa Y., Decaprio J. A., Saito M. and Griffin J. D. (1992) Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. J. Cell. Physiol.150: 484–492

    Article  PubMed  Google Scholar 

  64. Cambier J. C. and Campbell K. S. (1992) Membrane immunoglobulin and its accomplices: new lessons from an old receptor. FASEB6: 3207–3217

    Google Scholar 

  65. Pleiman C. M., D'Ambrosio D. and Cambier J. C. (1994) The B cell antigen receptor complex: structure and signal transduction. Immunol. Today15: 393–399

    Article  PubMed  Google Scholar 

  66. Reth M. (1992) Antigen receptors on B lymphocytes. Annu. Rev. Immunol.10: 97–121

    Article  PubMed  Google Scholar 

  67. Weiss A. and Littman D. R. (1994) Signal transduction by lympohocyte antigen receptors. Cell.76: 263–274

    Article  PubMed  Google Scholar 

  68. Cambier J. C., Pleiman C. M. and Clark M. R. (1994) Signal transduction by the B cell antigen receptor and its coreceptors. Annu. Rev. Immunol.12: 457–486

    Article  PubMed  Google Scholar 

  69. Coggeshall K. M., McHugh J. C. and Altman A. (1992) Predominant expression and activation-induced tyrosine phosphorylation of phospholipase C-γ2 in B lymphocytes. Proc. Natl Acad. Sci. USA89: 5660–5664

    PubMed  Google Scholar 

  70. Ales-Martinez J. E., Warner G. L. and Scott D. (1988) Immunoglobulins D and M mediate signals that are qualitatively different in B cells with an immature phenotype. Proc. Natl Acad. Sci. USA85: 6919–6923

    PubMed  Google Scholar 

  71. Cuendo E., Ales-Martinez J. E., Ding L., Gonzalez-Garcia C., Martinez A. and Nunez, G. (1993) Programmed cell death bybcl-2-dependent and independent mechanisms in B lymphoma cells. EMBO J.12: 1555–1560

    PubMed  Google Scholar 

  72. Benhamou L. E., Cazenave P. A. and Sarthou P. (1990) Anti-immunoglobulins induce death by apoptosis in WEHI-231 B lymphoma cells. Eur. J. Immunol.20: 1405–1407

    PubMed  Google Scholar 

  73. Hasbold J. and Klaus G. G. B. (1990) Anti-immunoglobulin antibodies induce apoptosis in immature B cell lymphomas. Eur. J. Immunol.20: 1685–1690

    PubMed  Google Scholar 

  74. Kim K.-M., Yoshimura T., Watanabe H., Ishigami T., Nambu M., Hata D., Higaki Y., Sasaki M., Tsutsui T., Mayumi M. and Mikawa H. (1991) Growth regulation of a human mature B cell line, N104, by anti-IgM and anti-IgD antibodies. J. Immunol.146: 819–825

    PubMed  Google Scholar 

  75. Burkhardt A. L., Brunswick M., Bolen J. B. and Mond J. J. (1991) Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc. Natl Acad. Sci. USA88: 7410–7414

    PubMed  Google Scholar 

  76. Yao R. and Cooper G. M. (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science267: 2003–2005

    PubMed  Google Scholar 

  77. Yao X. R. and Scott D. W. (1993) Antisense oligodeoxynucleotides to the blk tyrosine kinase prevent anti-μ-chain-mediated growth inhibition and apoptosis in a B-cell lymphoma. Proc. Natl Acad. Sci. USA90: 7946–7950

    PubMed  Google Scholar 

  78. Migitas K., Eguchi K., Kawabe Y. and Nagatake S. (1995) Tyrosine phosphorylation participates in peripheral T-cell activation and programmed cell death in vivo. Immunol.85: 550–555

    Google Scholar 

  79. Yao X., Flaswinkel H., Reth M. and Scott D. W. (1995) Immunoreceptor tyrosine-based activation motif is required to signal pathways of receptor mediated growth arrest and apoptosis in murine B lymphoma cells. J. Immunol. 155: 652–661

    PubMed  Google Scholar 

  80. Yamanishi Y., Okada M., Semba T., Yamori J., Umemori H., Tsunasawa S., Toyoshima K., Kitamura D., Watanabe T. and Yamamoto T. (1993) Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated signaling. Proc. Natl Acad. Sci. USA90: 3631–3635

    PubMed  Google Scholar 

  81. Fukuda T., Kitamura D., Tniuchi I., Mackawa Y., Benhamou L. E., Sarthou P. and Watanabe T. (1995) Restoration of surface IgM-mediated apoptosis in an anti-IgM-resistant variant of WEHI-231 lymphoma cells by HS1, a protein tyrosine kinase substrate. Proc. Natl Acad. Sci. USA92: 7302–7306

    PubMed  Google Scholar 

  82. Taniuchi I., Kitamura D., Maekawa Y., Kukuda T., Kishi H. and Watanabe T. (1995) Antigen-receptor induced clonal expansion and deletion of lymphocytes are impaired in mice lacking HS1 protein, a substrate of the antigen-receptorcoupled tyrosine kinases. EMBO J.14: 3664–3678

    PubMed  Google Scholar 

  83. McColl S. R., DiPersio J. F., Caon A. C., Ho P. and Naccache P. H. (1991) Involvement of tyrosine kinases in the activation of human peripheral blood neutrophils by granulocyte-macrophage colony-stimulating factor. Blood78: 1842–1852

    PubMed  Google Scholar 

  84. Yousefi S., Green D. R., Blaser K. and Simon H.-U. (1994) Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl Acad. Sci. USA91: 10868–10872

    PubMed  Google Scholar 

  85. Myers D. E., Jun X., Waddick K. G., Forsyth C., Chelstrom L. M., Gunther R. L., Tumer N. E., Bolen J. and Uckun F. M. (1995) Membrane-associated CD19-LYN complex is an endogenous p53-independent and Bcl-2-independent regulator of apoptosis in human B-lineage lymphoma cells. Proc. Natl Acad. Sci. USA92: 9575–9579.

    PubMed  Google Scholar 

  86. Jacobson M. D., Burne J. F. and Raff M. C. (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J.13: 1899–1910

    PubMed  Google Scholar 

  87. Laneuville P., Timm M. and Hudson A. T. (1994)bcr-abl expression in 32D cl3(G) cells inhibits apoptosis induced by protein tyrosine kinase inhibitors. Cancer Res.54: 1360–1366

    PubMed  Google Scholar 

  88. Smetsers T. F. M. C., Skorski T., van de Locht L. T. F., Wessels H. M. C., Pennings A. H. M., de Witte T., Calabretta B. and Mensink E. J. B. M. (1994) Antisense BCR-ABL oligonucleotides induce apoptosis in the Philadelphia chromosome-positive cell line BV173. Leukemia8: 129–140

    PubMed  Google Scholar 

  89. Szczylik C., Skorski T., Nicolaides N. C., Manzella L., Malaguarnera L., Venturelli D., Gewirtz A. M. and Calabretta B. (1991) Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science253: 562–565

    PubMed  Google Scholar 

  90. Cortez D., Kadlec L. and Pendegrast A. M. (1995) Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol. Cell. Biol.15: 5531–5541

    PubMed  Google Scholar 

  91. Evans C. A., Owen-Lynch P. J., Whetton A. D. and Dive C. (1993) Activation of the abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer Res.53: 1735–1738

    PubMed  Google Scholar 

  92. Evans C. A., Lord J. M., Owen-Lynch P. J., Johnson G., Dive C. and Whetton A. D. (1995) Suppression of apoptosis by v-ABL protein tyrosine kinase is associated with nuclear translocation and activation of protein kinase C in an interleukin-3-dependent haemopoietic cell line. J. Cell. Sci.108: 2591–2599

    PubMed  Google Scholar 

  93. Schieven G. L., Wahl A. F., Myrdal S., Grosmaire L. and Ledbetter J. A. (1995) Lineage-specific induction of B cell apoptosis and altered signal transduction by the phosphotyrosine phosphatase inhibitor Bis(maltolato)oxovanadium(IV). J. Biol. Chem.270: 20824–20831

    Article  PubMed  Google Scholar 

  94. Troiano L., Monti D., Cossarizza A., Lovato E., Tropea F., Barbieri D., Morale M. C., Gallo F., Marchetti B. and Franceschi C. (1995) Involvement of CD45 in dexamethasone and heat shock-induced apoptosis of rat thymocytes. Biochem. Biophys. Res. Comm.214: 941–948

    Article  PubMed  Google Scholar 

  95. Hanaoka K., Fujita N., Lee S.-H., Naito M. and Tsuruo T. (1995) Involvement of CD45 in adhesion and suppression of apoptosis of mouse malignant T-lymphoma cells. Cancer Res.55: 2186–2190

    PubMed  Google Scholar 

  96. Forbes I., Zalewski P., Giannakis C. and Cowled P. (1992) Induction of apoptosis in chronic lymphocytic leukemia cells and its prevention by phorbol ester. Exp. Cell Res.198: 367–372

    Article  PubMed  Google Scholar 

  97. Kanter P., Leister K., Tomei L., Wenner P. and Wenner C. (1984) Epidermal growth factor and tumour promoters prevent DNA fragmentation by different mechanisms. Biochem. Biophys. Res. Commun.118: 392–399

    Article  PubMed  Google Scholar 

  98. McConkey D., Hartzell P., Jondal M. and Orrenius S. (1989) Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J. Biol. Chem.264: 13399–13402

    PubMed  Google Scholar 

  99. Rodriguez-Tarduchy G. and Lopez-Rivas A. (1989) Phorbol esters inhibit apoptosis in IL-2 dependent T lymphocytes. Biochem. Biophys. Res. Commun.164: 1069–1075

    Article  PubMed  Google Scholar 

  100. Tomei L., Kanter P. and Wenner C. (1988) Inhibition of radiation-induced apoptosis in vitro by tumour promoters. Biochem. Biophys. Res. Commun.155: 324–331

    Article  PubMed  Google Scholar 

  101. Grant S., Jarvis W., Swerdlow P., Turner A., Traylor R., Wallace H., Lin P.-S., Pettit G. and Gewirtz D. (1992) Potentiation of the activity of 1-β-d-arabinofuranosylcytosine by the protein kinase C activator bryostatin 1 in HL-60 cells: association with enhanced fragmentation of mature DNA. Cancer Res.52: 6270–6278

    PubMed  Google Scholar 

  102. Ishii H. and Gobe G. (1993) Epstein-Barr virus infection is associated with increased apoptosis in untreated and phorbol ester-treated human Burkitt's lymphoma (AW-Ramos) cells. Biochem. Biophys. Res. Commun.192: 1415–1423

    Article  PubMed  Google Scholar 

  103. Kikaki H., Tadakuma T., Odaka C., Muramatsu J. and Ishimura Y. (1989) Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J. Immunol.143: 1790–1794

    PubMed  Google Scholar 

  104. Pommier Y. and Colburn N. (1992) Acquisition of a growth-inhibitory response to phorbol ester involves DNA damage. Cancer Res.52: 1907–1915

    PubMed  Google Scholar 

  105. Pongracz J., Tuffley W., Johnson G. D., Deacon E. M., Burnett D., Stockley R. A. and Lord J. M. (1995) Changes in protein kinase C isoenzyme expression associated with apoptosis in U937 myelomonocytic cells. Exp. Cell Res.218: 430–438

    Article  PubMed  Google Scholar 

  106. Dekker L. V. and Parker P. J. (1994) Protein kinase C — a question of specificity. TIBS19: 73–77

    PubMed  Google Scholar 

  107. Hug H. and Sarre T. F. (1993) Protein kinase C isoenzymes: divergence in signal transduction? Biochem. J.291: 329–343

    PubMed  Google Scholar 

  108. Kazanietz M. G., Areces L. B., Bahador A., Mischak H., Goodnight J., Mushinski J. F. and Blumberg P. M. (1993) Characterisation of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol. Pharmacol.44: 298–307

    PubMed  Google Scholar 

  109. Nakanishi H., Brewer K. A. and Exton J. H. (1993) Activation of the zeta isoenzyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.268: 13–16

    PubMed  Google Scholar 

  110. Newton A. (1995) Protein kinase C: structure function and regulation. J. Biol. Chem.270: 28495–28498

    Article  PubMed  Google Scholar 

  111. Nishizuka Y. (1995) Protein kinase C and lipid signalling for sustained cellular responses FASEB J.9: 484–496

    PubMed  Google Scholar 

  112. Pfeffer L. M., Eisenkraft B. L., Reich N. C., Improta T., Baxter G., Daniel-Issakani S. and Strulovici B. (1991) Transmembrane signaling by interferon alpha involves diacylglycerol production and activation of the epsilon isoform of protein kinase C in Daudi cells. Proc. Natl Acad. Sci.88: 7988–7992

    PubMed  Google Scholar 

  113. Pfeffer L. M., Strulovici B. and Saltiel A. R. (1990) Interferon-α selectively activates the β isoform of protein kinase C through phosphatidylcholine hydrolysis. Proc. Natl Acad. Sci. USA87: 6537–6541

    PubMed  Google Scholar 

  114. Harris R. A., McQuilkin S. J., Paylor R., Abeliovich A., Tonegawa S. and Wehner J. M. (1995) Mutant mice lacking the γ isoform of protein kinase C show decreased behavioural actions of ethanol and altered function of γ amino butyrate type A receptors Proc. Natl Acad. Sci. USA92: 3658–3662

    Google Scholar 

  115. Whetton A. D., Heyworth C. M., Niocholls S. E., Evans C. A., Lord J. M., Dexter T. M. and Owen-Lynch P. J. (1994) Cytokine-mediated protein kinase C activation is a signal for lineage determination in bipotential granulocyte macrophage colony-forming cells. J. Cell Biol.125: 651–659

    Article  PubMed  Google Scholar 

  116. Müller G., Ayoub M., Storz P., Rennecke J., Fabbro D. and Pfizenmaier K. (1961) PKCζ is a molecular switch in signal transduction of TNFα bifunctionally regulated by ceramide and arachidonic acid. EMBO J.14: 1961–1969

    Google Scholar 

  117. Diaz-Meco M. T., Dominguez I., Sanz L., Dent P., Lozano J., Municio M. M., Berra E., Hay R. T., Sturgill T. W. and Moscat J. (1994) ζPKC induces phosphorylation and inactivation of IkB-α in vitro. EMBO J.13: 2842–2848

    PubMed  Google Scholar 

  118. Wooten M. W., Zhou G., Seibenhener M. L. and Coleman E. S. (1994) A role for ζ protein kinase C in nerve growth factor-induced differentiation of PC12 cells. Cell Growth Diff.5: 395–403

    PubMed  Google Scholar 

  119. Ojeda F., Guarda M. I., Maldonado C. and Folch H. (1990) Protein kinase-C involvement in thymocyte apoptosis induced by hydrocortisone. Cell. Immunol.125: 535–539

    Article  PubMed  Google Scholar 

  120. Sato K., Ido M., Kamiya H., Sakurai M. and Hikada H. (1988) Phorbol esters potentiate glucocorticoid-induced cytotoxicity in CEMC7 human T-leukemia cell line. Leukemia Res.12: 3–12

    Google Scholar 

  121. Kazanietz M. G., Lewin N. E., Bruns J. D. and Blumberg P. M. (1995) Characterisation of the cysteine-rich region of theCaenorhabditis elecgans protein UNC-13 as a high affinity phorbol ester receptor. analysis of ligand-binding interactions, lipid cofactor requirements and inhibitor sensititity. J. Biol. Chem.270: 10777–10783

    Article  PubMed  Google Scholar 

  122. Ahmed S., Lee J., Kozma R., Best A., Monfries C. and Lim L. (1993) A novel functional target for tumor promoting phorbol esters and lysophosphatidic acid. The p21 rac-GTPase activating protein n-chemaerin. J. Biol. Chem.268: 10709–10712

    PubMed  Google Scholar 

  123. Szallasi S., Smith C. B., Pettit G. R. and Blumberg P. M. (1994) Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH3T3 fibroblasts. J. Biol. Chem.269: 2118–2124

    PubMed  Google Scholar 

  124. Knox K. A., Johnson G. D. and Gordon J. (1993) A study of protein kinase C isozyme distribution in relation to Bcl-2 expression during apoptosis of epithelial cells in vivo. Exp. Cell. Res.207: 68–73

    Article  PubMed  Google Scholar 

  125. Iwata M., Iseki R., Sato K., Tozawa Y. and Ohoka Y. (1994) Involvement of protein kinase C-ε in glucocorticoid-induced apoptosis in thymocytes. Internat. Immunol.6: 431–438

    Google Scholar 

  126. de Vente J. E., Kukoly C. A., Bryant W. O., Posekany K. J., Chen J., Fletcher D. J., Parker P. J., Pettit G. J., Lozano G., Cook P. P. and Ways D. K. (1995) Phorbol esters induce death in MCF-7 breast cancer cells with altered expression of protein kinase C isoforms. J. Clin. Invest.96: 1874–1886

    PubMed  Google Scholar 

  127. MacFarlane D. E. and Manzel L. (1994) Activation of β-isozyme of protein kinase C (PKCβ) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. J. Biol. Chem.269: 4327–4331

    PubMed  Google Scholar 

  128. de Vente J., Kiley S., Garrio T., Bryant W., Hooker J., Posekany K., Parker P., Cook P., Fletcher D. and Ways D. K. (1995) Phorbol ester treatment of U937 cells with altered protein kinase C content and distribution induces cell death rather than differentiation. Cell Growth Diff.6: 371–382

    PubMed  Google Scholar 

  129. Uckun F. M., Schieven G. L., Tuel-Ahlgren L. M., Dibirdik I., Myers D. E., Ledbetter J. A. and Song C. W. (1993) Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors. Proc. Natl Acad. Sci. USA90: 252–256

    PubMed  Google Scholar 

  130. Hallahan D. E., Sukhatme V. P., Sherman M. L., Virudachalam S., Kufe D. and Weicheselbaum R. R. (1991) Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc. Natl Acad. Sci. USA88: 2156–2160

    PubMed  Google Scholar 

  131. Herrlich P., Mallick U., Ponta H. and Rahmsdorf H. J. (1984) Genetic changes in mammalian cells reminiscent of an SOS response. Human Genet.67: 360–368

    Article  Google Scholar 

  132. Emoto Y., Manome Y., Meinhardt G., Kisaki H., Kharbanda S., Robertson M., Ghayur T., Wong W. W., Kamen R., Weichselbaum R. and Kufe D. (1995) Proteolytic activation of protein kinase C δ by an ICE-like protease in apoptotic cells. EMBO J.14: 6148–6156

    PubMed  Google Scholar 

  133. Findik D., Song Q., Hidaka H. and Lavin M. (1995) Protein kinase A inhibitors enhance radiation-induced apoptosis. J. Cell. Biochem.57: 12–21

    Article  PubMed  Google Scholar 

  134. McConkey D., Orrenius S. and Jondal M. (1990) Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J. Immunol.145: 1227–1230

    PubMed  Google Scholar 

  135. Lanotte M., Riviere J. B., Hermouet S., Houge G., Vintermyr O. K., Gjertsen B. T. and Doskeland S. O. (1991) Programmed cell death (apoptosis) is induced rapidly and with positive cooperativity by activation of cyclic adenosine monophosphate-kinase I in a myeloid leukemia cell line. J. Cell Physiol.146: 73–80

    Article  PubMed  Google Scholar 

  136. Duprez E., Gjertsen B. T., Bernard O., Lanotte M. and Doskeland S. O. (1993) Antiapoptotic effect of heterozygously expressed mutant RI (Ala336→Asp) subunit of cAMP kinase I in a rat leukemia cell line. J. Biol. Chem.268: 8332–8340

    PubMed  Google Scholar 

  137. Vintermyr O. K., Gjersten B. T., Lanotte M. and Doskeland S. O. (1993) Microinjected catalytic subunit of cAMP dependent protein kinase induces apoptosis in myeloid leukemia (IPC-81) cells. Exp. Cell Res.206: 157–161

    Article  PubMed  Google Scholar 

  138. Ojeda F., Folch H., Guarad M. I., Jastorff B. and Dlehl H. A. (1995) Induction of apoptosis in thymocytes: new evidence for an interaction of PKC and PKA pathways. Biol. Chem. Hoppe-Seyler376: 389–393

    PubMed  Google Scholar 

  139. Zhang Y., Lin J.-X., Yip Y. K. and Vilcek J. (1988) Enhancement of cAMP levels and of protein kinase activity by tumor necrosis factor and interleukin 1 in human fibroblasts: role in the induction of interleukin 6. Proc. Natl Acad. Sci. USA85: 6802–6805

    PubMed  Google Scholar 

  140. Dressler K. A., Mathias S. and Kolesnick R. N. (1992) Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell free system. Science255: 1715–1718

    PubMed  Google Scholar 

  141. Marino M. W., Feld L. J., Jaffe E. A., Pfeffer L. M., Han H-M. and Donner D. B. (1991) Phosphorylation of the proto-oncogene product eukaryotic initiation factor 4E is a common cellular response to tumor necrosis factor. J. Biol. Chem.266: 2685–2688

    PubMed  Google Scholar 

  142. Saklatvala J., Kaur P. and Guesdon F. (1991) Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. Biochem. J.277: 635–642

    PubMed  Google Scholar 

  143. Lowenthal J. W., Ballard D. W., Bohnlein E. and Greene W. C. (1989) Tumor necrosis factor α induces proteins that bind specifically to B-like enhancer elements and regulate interleukin 2 receptor α-chain gene expression in primary human T lymphocytes. Proc. Natl Acad. Sci. USA86: 2331–2335

    PubMed  Google Scholar 

  144. Guesdon F., Freshney N., Waller R. J., Rawlinson L. and Saklatvala J. (1993) Interleukin 1 and tumor necrosis factor stimulate two level protein kinases that phosphorylate the heat shock protein hsp27 and β-casein. J. Biol. Chem.268: 4236–4243

    PubMed  Google Scholar 

  145. Mathias S., Dressler K. A. and Kolesnick R. N. (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor α. Proc. Natl Acad. Sci. USA88: 10009–10013

    PubMed  Google Scholar 

  146. Guy G. R., Cairns J., Ng S. B. and Tan Y. H. (1993) Inactivation of a redox-sensitive protein phosphatase during the early events of tumor necrosis factor/interleukin-1 signal transduction. J. Biol. Chem.268: 2141–2148

    PubMed  Google Scholar 

  147. Tan Y. H. (1993) Yin and Yang of phosphorylation in cytokine signaling. Science262: 376–377

    PubMed  Google Scholar 

  148. Loetscher H., Steinmetz M. and Lesslauer W. (1991) Tumor necrosis factor: receptors and inhibitors. Cancer Cells3: 221–226

    PubMed  Google Scholar 

  149. Tartaglia L. A. and Goessel D. V. (1992) Two TNF receptors. Immunol. Today13: 151–153

    Article  PubMed  Google Scholar 

  150. Vandenabeele P., Declercq W., Betaert R. and Fiers W. (1995) Two tumour necrosis factor receptors: structure and function. Trends in Cell Biology5: 392–399

    Article  PubMed  Google Scholar 

  151. Darnay B. G., Reddy S. A. G. and Aggarwal B. B. (1994) Identification of a protein kinase associated with the cytoplasmic domain of the p60 tumor necrosis factor receptor. J. Biol. Chem.269: 20299–20304

    PubMed  Google Scholar 

  152. Beyaert R., Vanhaesebroeck B., Declercq W., Van Lint J., Vandenabeele P., Agostinis P., Vandenheede J. R. and Fiers W. (1995) Casein kinase-1 phosphorylates the p75 tumour necrosis factor receptor and negatively regulates tumour necrosis factor signaling for apoptosis. J. Biol. Chem.270: 23293–23299

    Article  PubMed  Google Scholar 

  153. Kolesnick R. and Fuks Z. (1995) Ceramide: a signal for apoptosis or mitogenesis? J. Exp. Med.181: 1949–1952

    Article  PubMed  Google Scholar 

  154. Pushkareva M., Obeid L. M. and Hannun Y. A. (1995) Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol. Today16: 294–297

    Article  PubMed  Google Scholar 

  155. Haimovitz-Friedman A., Ehleiter C., Pershand D., McLouglin R., Fuks Z. and Kolesnick R. (1994) Ionising radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med.180: 525–535

    Article  PubMed  Google Scholar 

  156. Liu J. S., Mathias S., Young Z. and Kolesnick R. N. (1994) Renaturation and TNFα stimulation of a 97 kDa ceramideactivated protein kinase. J. Biol. Chem.269: 3047–3052

    PubMed  Google Scholar 

  157. Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L. and Moscat J. (1994) Protein kinase C isoform is critical for KB-dependent promoter activation by sphingomyelinase. J. Biol. Chem.269: 19200–19202

    PubMed  Google Scholar 

  158. Gulbins E., Coggeshall K. M., Baier B., Telford D., Langlet C., Baier-Bitterlich G., Bonnefoy-Berard N., Burn P., Wittinghofer A. and Altman A. (1994) Direct stimulation of Vav gaunine nucleotide exchange activity for Ras by phorbol esters and diglycerides. Mol. Cell. Biol.14: 4749–4758

    PubMed  Google Scholar 

  159. Gulbins E., Bissonette R., Mahboubi A., Marin S., Mishioka W., Brunner T., Baier G., Baier-Bitterlich G., Byrd C., Lang F., Kolesnick R., Altman A. and Green D. (1995) FAS-induced apoptosis is mediated via a ceramide initiated RAS signaling pathway. Immunity2: 341–351

    Article  PubMed  Google Scholar 

  160. Westwick J. K., Bielawska A. E., Dbaibo G., Hannun Y. A. and Brunner D. A. (1995) Ceramide activates the stress-activated protein kinases. J. Biol. Chem.270: 22689–22692

    Article  PubMed  Google Scholar 

  161. Estus S., Zaks W. J., Freeman R. S., Gruda M., Bravo R. and Johnson E. M. Jr (1994) Altered gene expression in neurons during programmed cell death: identification of c-Jun as necessary for neuronal apoptosis. J. Cell. Biol.127: 1717–1727

    Article  PubMed  Google Scholar 

  162. Ham J., Babij C., Whitfield J., Pfarr C. M., Lallemand D., Yaniv M. and Rubin L. L. (1995) A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron14: 927–939

    Article  PubMed  Google Scholar 

  163. Goldstone S. D. and Lavin M. F. (1994) Prolonged expression of c-jun and associated activity of transcription factor AP-1, during apoptosis in a human leukaemic cell line. Oncogene9: 2305–2311

    PubMed  Google Scholar 

  164. Sawai H., Okazaki T., Yamamoto H., Okano H., Taked A. Y., Tashima M., Sawada H., Okuma M., Ishikura H., Umehara H. and Domae N. (1995) Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J. Biol. Chem.270: 27326–27331

    Article  PubMed  Google Scholar 

  165. Hibi M., Lin A., Smeal T., Minden A. and Karin M. (1993) Identification of an oncoprotein-and-UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev.7: 2135–2148

    PubMed  Google Scholar 

  166. Kallunki T., Su B., Tsigelny I., Sluss H. K., Derijard B., Moore G., Davis R. and Karin, M. (1994) JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev.8: 2996–3007

    PubMed  Google Scholar 

  167. Steller H. (1995) Mechanisms and genes of cellular suicide. Science267: 1445–1449

    PubMed  Google Scholar 

  168. Thompson C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science267: 1456–1462

    PubMed  Google Scholar 

  169. Marais R., Wynne J. and Treisman R. (1993) The SRF accessory protein Elk-1 contains a growth factor regulated transcriptional activation domain. Cell73: 381–393

    Article  PubMed  Google Scholar 

  170. Hanawalt P. C. (1989) Heterogeneity of DNA repair at the gene level. Mutation Res.217: 173–183

    PubMed  Google Scholar 

  171. Devary Y., Gottlieb R. A., Law L. F. and Karin M. (1991) Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell. Biol.11: 2804–2811

    PubMed  Google Scholar 

  172. Devary Y., Gottlieb R. A., Smeal T. and Karin M. (1992) The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell71: 1081–1091

    PubMed  Google Scholar 

  173. Domashenko A. D., Nazarola L. F. and Umansky S. R. (1990) Comparison of the spectra of proteins synthesized in mouse thymocytes after irradiation or hydrocortisone treatment. Int J. Radiat. Biol.57: 315–329

    PubMed  Google Scholar 

  174. Fornace A. J. Jr, Alamo I. Jr and Hollander c. (1988) DNA damage-inducible transcripts in mammalian cells. Proc. Natl Acad. Sci. USA85: 8800–8804

    PubMed  Google Scholar 

  175. Fornace A. J. Jr, Nebert D. W. E., Hollander M. C., Leuthy D., Parathanasiou M., Farngoli J. and Holdbrook N. F. (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol.9: 4196–4203

    PubMed  Google Scholar 

  176. Glazer P. M., Greggio N. A., Metherall J. A. and Summers W. C. (1989) UV-induced DNA binding proteins in human cells. Proc. Natl Acad. Sci. USA86: 1163–1167

    PubMed  Google Scholar 

  177. Harper J. W., Adami G. R., Wei N., Keyomarsi K. and Elledge S. J. (1993) The p21 cdk-interacting protein cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell.75: 805–816

    Article  PubMed  Google Scholar 

  178. Angel P., Hattori K., Smeal T. and Karin M. (1988) The c-jun proto-oncogene is positively autoregulated by its product Jun/AP-I. Cell55: 875–885

    Article  PubMed  Google Scholar 

  179. Hartwell L. H. and Kastan M. B. (1994) Cell cycle control and cancer. Science266: 1821–1828

    PubMed  Google Scholar 

  180. Kastan M. B., Oneykwere O., Sidransky D., Vogelstein B. and Craig R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51: 6304–6311

    PubMed  Google Scholar 

  181. Pardee A. B. (1989) G1 events and regulation of cell proliferation. Science246: 603–608

    PubMed  Google Scholar 

  182. Kastan M. B. (1993) p53: a determinant of the cell cycle response to DNA damage. Adv. Exp. Med. Biol.339: 291–293

    PubMed  Google Scholar 

  183. El-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W. and Vogelstein B. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell75: 817–825

    Article  PubMed  Google Scholar 

  184. Xiong Y., Zhang H. and Beach D. (1993) Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev.7: 1572–1583

    PubMed  Google Scholar 

  185. Zambetti G. P. and Levine A. J. (1993) A comparison of biological activaties of wild-type and mutant p53. FASEB J.7: 855–865

    PubMed  Google Scholar 

  186. Reich N. C. and Levine A. J. (1984) Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature308: 199–201

    PubMed  Google Scholar 

  187. Ullrich S. J., Anderson C. W., Mercer W. E. and Appella E. (1992) The p53 tumour suppressor protein, a modulator of cell proliferation. J. Biol. Chem.267: 15259–15262

    PubMed  Google Scholar 

  188. Ullrich S. J., Mercer W. E. and Appella E. (1992) Human wild-type p53 adopts a unique conformational and phosphorylation state in vivo during growth arrest of gliblastoma cells. Oncogene7: 1635–1643

    PubMed  Google Scholar 

  189. Delphin C. and Baudier J. (1994) The protein kinase C activator, phorbol ester, cooperates with the wild-type p53 species of Ras-transformed embryo fibroblasts. J. Biol. Chem.47: 29579–29587

    Google Scholar 

  190. Lotem J. and Sachs L. (1993) Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood82: 1092–1096

    PubMed  Google Scholar 

  191. Meikrantz W., Gisselbrecht S., Tam S. W. and Schlegel R. (1994) Activation of cyclin 1-dependent protein kinases during apoptosis. Proc. Natl Acad. Sci. USA91: 3754–3758

    PubMed  Google Scholar 

  192. Hoang A. T., Cohen K. J., Barrett, J. F., Bergstrom D. A. and Dang C. V. (1994) Participation of cyclin A in Myc-induced apoptosis. Proc. Natl Acad. Sci. USA91: 6875–6879

    PubMed  Google Scholar 

  193. Shi L., Nishioka K., Th'ng J., Bradbury M., Litchfield D. W. and Greenberg A. H. (1994) Premature p34cdc2 activation required for apoptosis. Science263: 1143–1145

    PubMed  Google Scholar 

  194. Shimizu T., O'Connor P. M., Kohn K. W. and Pommier Y. (1995) Unscheduled activation of cyclin B1/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res.55: 228–231

    PubMed  Google Scholar 

  195. Dou Q. P., Molnar G. and Pardee A. B. (1994) Cyclin D1/cdk2 kinase is present in a G1 phase-specific protein complex Yi1 that binds to the mouse thymidine kinase gene promoter. Biochem. Biophys. Res. Comm.205: 1859–1868

    Article  PubMed  Google Scholar 

  196. Belizario J. E. and Dinarello C. (1991) Interleukin 1, interleukin 6, tumor necrosis factor and transforming growth factor beta increase cell resistance to tumor necrosis factor cytotoxicity by growth arrest in the G1 phase of the cell cycle. Cancer Res.51: 2379–2385

    PubMed  Google Scholar 

  197. Buchou T., Kranenburg O., van Dam H., Roelen D., Zantema A., Hall F. L. and van der Eb A. (1993) Increased cyclin A and decraased cyclin D levels in adenovirus 5 ElA-transformed rodent cell lines. Oncogene8: 1765–1773

    PubMed  Google Scholar 

  198. Jansen-Durr P., Meichle A., Steiner P., Pagano M., Finke K., Botz J., Wessbecher J., Draetta G. and Eiler M. (1993) Differential modulation of cyclin gene expression by MYC. Proc. Natl Acad. Sci. USA90: 3685–3689

    PubMed  Google Scholar 

  199. Martin S. J., McGahon A. J., Nishioka W. K., LaFace D., Guo X., Th'ng J., Bradbury E. M. and Green D. R. (1995) p34cdc2 and apoptosis (letter). Science269: 106–107

    PubMed  Google Scholar 

  200. Norbury C., MacFarlane M., Fearnhead H. and Cohen G. M. (1994) Cdc2 activation is not required for thymocyte apoptosis. Biochem. Biophys. Res. Comm.202: 1400–1406

    Article  PubMed  Google Scholar 

  201. Bunnell B. A., Heath L. S., Adams D. E., Lahti J. M. and Kidd V. J. (1990) Increased expression of a 58 kDa protein kinase leads to changes in the CHO cell cycle. Proc. Natl Acad. Sci. USA87: 7467–7471

    PubMed  Google Scholar 

  202. Lahti J. M., Xiang J., Heath L. S., Campana D. and Kidd V. J. (1995) PITSLRE protein kinase activity is associated with apoptosis. Mol. Cell. Biol.15: 1–11

    PubMed  Google Scholar 

  203. Drewinko B. and Barlogie B. (1976) Survival and cycle-progression delay of human lymphoma cells in vitro exposed to VP-16-213. Cancer Treat. Rep.60: 1295–1306

    PubMed  Google Scholar 

  204. Rao A. P. and Rao P. N. (1976) The cause of G2-arrest in Chinese hamster ovary cells treated with anticancer drugs. J. Natl Cancer Inst.57: 1139–1143

    PubMed  Google Scholar 

  205. Lock R. B. and Ross W. E. (1990) Possible role for p34cdc2 kinase in etoposide-induced cell death of Chinese hamster ovary cells. Cancer Res.50: 3767–3771

    PubMed  Google Scholar 

  206. Chen G., Shi L., Litchfield D. W. and Greenberg A. H. (1995) Rescue from granzyme B-induced apoptosis by Weel kinase. J. Exp. Med.181: 2295–2300

    Article  PubMed  Google Scholar 

  207. Ullrich A. and Schlessinger J. (1990) Signal transduction by receptors with tyrosine kinase activity. Cell61: 203–212

    PubMed  Google Scholar 

  208. Auger K. R., Carpenter C. L., Shoelson S. E., Piwnica-Worms H. and Cantley L. C. (1992) Polyoma virus middle T antigen-pp60c-src complex associates with purified phosphatidylinositol 3-kinase in vitro. J. Biol. Chem.267: 5408–5415

    PubMed  Google Scholar 

  209. Carpenter C. L., Duckworth B. C., Auger K. R., Cohen B., Schaffhausen B. S. and Cantley L. C. (1990) Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem.265: 19704–19711

    PubMed  Google Scholar 

  210. Dhand R., Hiles I., Panayotou G., Roche S., Fry M. J., Gout I., Totty N. F., Truong O., Vicendo P., Yonezawa K., Kasuga M., Courtneidge S. A. and Waterfield M. D. (1994) PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J.12: 522–533

    Google Scholar 

  211. Stephens L., Eguinoa A., Corey S., Jackson T. and Hawkins P. T. (1993) Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeloid derived cells. EMBO J.12: 2265–2273

    PubMed  Google Scholar 

  212. Varticovski L., Harrison-Findik D., Keeler M. L. and Sus M. (1994) Role of PI 3-kinase in mitogenesis. Biochim. Biophys. Acta1226: 1–11

    PubMed  Google Scholar 

  213. Glass D. J. and Yancopoulos G. D. (1993) The neurotrophins and their receptors. Trends Cell. Biol.3: 262–265

    Article  PubMed  Google Scholar 

  214. Levi-Montalcini R. (1987) The nerve growth factor 35 years later. Science237: 1154–1162

    PubMed  Google Scholar 

  215. Kaplan D. R., Martin-Zanca D. and Parada L. F. (1991) Tyrosine phosphorylation and tyrosine kinase activity of the Erk proto-oncogene product induced by NGF. Nature350: 158–160

    Article  PubMed  Google Scholar 

  216. Klein R., Jing S., Nanduri V., O'Rourke E. and Barbacid M. (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell65: 189–197

    PubMed  Google Scholar 

  217. Batistatou A. and Greene L. A. (1993) Internucleosomal DNA cleavage and neuronal cell survival/death. J. Cell Biol.122: 523–532

    Article  PubMed  Google Scholar 

  218. Greene L. A. (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J. Cell Biol.78: 747–755

    Article  PubMed  Google Scholar 

  219. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S., Ashkenazi M., Pecker I., Harnik R., Patanjali S. R., Simmons A., Frydman M., Sartiel A., Gatti R. A., Chessa L., Sanal O., Lavin M. F., Jaspers N. G. J., Malcolm A., Taylor R., Arlett C. F., Miki T., Weissman S. M., Lovett M., Collins F. S. and Shiloh Y. (1995) A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science268: 1749–1753

    PubMed  Google Scholar 

  220. Jackson S. P. (1995) Ataxia-telangiectasia at the crossroads. Current Biology5: 1210–1212

    Article  PubMed  Google Scholar 

  221. Lavin M. F., Khanna K. K., Beamish H., Williams R., Spring K., Watters D. and Shiloh Y. (1995) Relationship of the ATM gene (mutated in ataxia-telangiectasia) to phosphatidylinositol 3-kinase. Trends. Biochem. Sci.20: 382–383

    Article  PubMed  Google Scholar 

  222. Zakian V. (1995) ATM-related genes: what do they tell us about functions of the human gene. Cell82: 685–687

    Article  PubMed  Google Scholar 

  223. Hartley K. O., Gell D., Smith G. C. M., Zhang H., Divecha N., Connelly M. A., Admon A., Lees-Miller S. P., Anderson C. W. and Jackson S. P. (1995) DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia-telangiectasia gene product. Cell82: 849–856

    Article  PubMed  Google Scholar 

  224. Hari K. L., Santerre A., Sekelsky J. J., McKim K. S., Boyd J. B. and Harley R. S. (1995) Themei-41 gene ofD. melanogaster is a structural and functional homolog of the human ataxia-telangiectasia gene. Cell82: 815–821

    Article  PubMed  Google Scholar 

  225. Greenwell P. W., Kronmal S. L., Porter S. E., Gassenhuber J., Obermaier B. and Petes T. D. (1995) TELI, a gene involved in controlling telomere length isS. cerevisiae, is homologous to the human ataxia-telangiectasia gene. Cell82: 823–829

    Article  PubMed  Google Scholar 

  226. Morrow D. M., Tagle D. A., Shiloh Y., Collins F. S. and Hieter P. (1995) TELI, anS. cerevisae homolog of the human gene mutated in ataxia-telangiectasia, is functionally related to the yeast checkpoint geneMECI. Cell82: 831–840

    Article  PubMed  Google Scholar 

  227. Meyn M. S. (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cell Res.55: 5991–6001

    Google Scholar 

  228. Sedgwick R. P. and Boder E. (1995) Ataxia-telangiectasia (208900; 208910; 208920). (1991) In: Hereditary Neuropathies and Spinocerebellar atrophies, pp. 347–423. Vinkins P. J., Bruyn G. W., Klawans H. L., Vianney D. E. and Jong J. M. B. (eds), Elsevier Science Publishers

  229. Shiloh Y. (1995) Ataxia-telangiectasia: closer to unraveling the mystery. Eur. J. Hum. Genet.3: 116–138

    PubMed  Google Scholar 

  230. Canman C. E., Wolff A. C., Chen C. Y., Fornace A. J. and Kastan M. B. (1994) The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res.54: 5054–5058

    PubMed  Google Scholar 

  231. Kastan M. B., Zhan Q., El-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B. and Fornace A. J. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 andGADD45 is defective in ataxia-telangiectasia. Cell71: 587–597

    Article  PubMed  Google Scholar 

  232. Khanna K. K., Beamish H., Yan J., Hobson K., Williams R., Dunn I. and Lavin M. F. (1995) Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene11: 609–618

    PubMed  Google Scholar 

  233. Khanna K. K. and Lavin M. F. (1993) Ionizing radiation and UV induction of p53 protein by different pathways in ataxiatelangiectasia cells. Oncogene8: 3307–3312

    PubMed  Google Scholar 

  234. Lu X. and Lane D. P. (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndrome? Cell75: 765–778

    Article  PubMed  Google Scholar 

  235. Meyn M. S., Strasfeld L. and Allen C. (1994) Testing the role of p53 in genetic instability and apoptosis in ataxia-telangiectasia. Int. J. Radiat. Biol.66: 141–149

    Google Scholar 

  236. Martin S. J. and Green D. R. (1995) Protease activation during apoptosis: death by a thousand cuts? Cell82: 349–352

    Article  PubMed  Google Scholar 

  237. Fernandes-Alnemri T., Litwack G. and Alnemri E. S. (1994) CPP32, a novel human apoptotic protein with homology toCaenorhabditis elegans cell death proteinced-3 and mammalian interleukin-1 β-converting enzyme. J. Biol. Chem.269: 30761–30764

    PubMed  Google Scholar 

  238. Thornberry N. A., Peterson E. P., Zhao J. J., Howard A. D., Griffin P. R. and Chapman K. T. (1994) Inactivation of interleukin-1 β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry33: 3934–3940

    Article  PubMed  Google Scholar 

  239. Wang H.-G., Miyashita T., Takayama S., Sato T., Torigoe T., Krajewski S., Tanaka S., Hovey L., Troppmair J., Rapp U. R. and Reed J. C. (1994) Apoptosis regulation by interaction of Bcl-2 protein and raf-1 kinase. Oncogene9: 2751–2756

    PubMed  Google Scholar 

  240. Kumar S. and Harvey N. L. (1995) Role of multiple cellular proteases in the execution of programmed cell death. FEBS Lett.375: 169–173

    Article  PubMed  Google Scholar 

  241. Dvir A., Peterson S. R., Knuth M., Lu H. and Williams S. D. (1993) Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl Acad. Sci. USA89: 11920–11924

    Google Scholar 

  242. Gottlieb T. M. and Jackson S. P. (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell72: 131–142

    PubMed  Google Scholar 

  243. Anderson C. W. and Lees-Miller S. (1992) The nuclear serine/threonine protein kinase DNA-PK. Critical Reviews in Eukaryotic Gene Expression2: 283–314

    PubMed  Google Scholar 

  244. Jackson S. P. and Jeggo P. A. (1995) DNA double-strand break repair, V(D)J recombination: involvement of DNA-PK. TIBS20: 412–415

    PubMed  Google Scholar 

  245. Roth D. B., Lindahl T. and Gelbert M. (1995) How to make ends meet. Curr. Biol.5: 496–499

    Article  PubMed  Google Scholar 

  246. Casciola-Rosen L. A., Anhalt Q. J. and Rosen A. (1995) DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med.182: 1625–1634

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavin, M.F., Watters, D. & Song, Q. Role of protein kinase activity in apoptosis. Experientia 52, 979–994 (1996). https://doi.org/10.1007/BF01920107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01920107

Key words

Navigation