Skip to main content

Advertisement

Log in

How does caspases regulation play role in cell decisions? apoptosis and beyond

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ABC:

Auditory Brain-stem Caspase-3

AiP:

Apoptosis-induced Proliferation

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ARC:

Apoptosis Repressor with a CARD

AURKB:

Aurora Kinase B

BIR:

Baculovirus IAP Repeat

CARD:

Caspase Recruitment Domain

CCl4:

Carbon tetrachloride

CDK1:

Cyclin Dependent Kinase-1

cFLIP:

cellular FLICE-Inhibitory Protein

cIAP:

cellular IAP

CK2:

Casein Kinase 2

CoIP:

Co-Immunoprecipitation

CPN2:

Calpain 2

CRISPR/Cas-9:

Clustered Degularly Interspaced Short Palindromic Repeats/ CRISPR-associated protein 9 CTD Carboxyl-

Dark:

Death-associated APAF1-related killer

Dcp-1:

Death caspase-1

DD:

Death Domain

ddaC:

Drosophila dendritic arborizing (da) sensory neuron

DED:

Death-Effector Domain

DIAP-1:

Death-associated inhibitor of apoptosis 1

DISC:

Death-Inducing Signaling Complex

DmIKKƐ :

Drosophila IKK-related kinase

DRG:

Dorsal Root Ganglion

Dronc:

Death regulator Nedd2-like caspase

DYRK1A:

Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A

ECM:

Extra Cellular Matrix

ERK:

Extracellular signal-Regulated Kinase

ESC:

Embryonic Stem Cell

EV:

Extracellular Vesicle

FAK:

Focal Adhesion Kinase

FAS:

Cell Surface Death Receptor

GSK3b:

Glycogen Synthase Kinase 3 Beta

HECTD3:

HECT domain E3 ubiquitin protein ligase 3

HID:

Head Involution Defective

IAPs:

Inhibitors of Apoptosis Proteins

IC:

Individualization complex

IL:

Interleukin

ISBP:

Ich-1S (caspase-2S)-binding protein

ITD:

Interaural Time Difference

LAMP1:

Lysosomal Associated Membrane Protein 1

LC3II:

Microtubule-associated protein 1 light chain 3

LTD:

Long-Term Depression

MAPK:

Mitogen-Activated Protein Kinase

mTORC:

Mammalian Target of Rapamycin Complex

NAIP:

NLR family Apoptosis Inhibitory Protein

NCAM:

Neural Cell Adhesion Molecule

NFkB:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

Ng-CAM:

Neuronal-glial Cell Adhesion Molecule

NMDA receptor:

N-methyl-D-aspartate receptor

PAK:

P21-Activated Kinase

PARP:

Poly (ADP-Ribose) Polymerase

PI3K:

Phosphoinositide 3-kinase

PIDD:

P53-Induced Protein With a Death Domain

PKA:

Protein kinase A

PKC:

Protein Kinase C

Rab-GAP:

Rab GTPase-Activating Protein

RGC:

Retinal Ganglion Cell

RING:

Really Interesting New Gene

RIPK:

Receptor Interacting Protein Kinases

ROS:

Reactive Oxygen Species

Rpr:

Reaper

RSK2:

Ribosomal S6 kinase 2

SCF:

Skp-Cullin-F-box protein complex

SOP:

Sensory Organ Precursor

TLR4:

Toll Like Receptor 4

TRAF2:

TNF Receptor-Associated Factor 2

TRAIL:

TNF-Related Apoptosis-Inducing Ligand

UPS:

Ubiquitin-Proteasome System

XIAP:

X-chromosome-linked IAP

XPC:

Xeroderma Pigmentosum, complementation group C

References

  1. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases: an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27. https://doi.org/10.1016/j.cbpb.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  2. Bouchier-Hayes L (2010) The role of caspase-2 in stress-induced apoptosis. J Cell Mol Med 14:1212–1224. https://doi.org/10.1111/j.1582-4934.2010.01037.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McArthur K, Kile BT (2018) Apoptotic caspases: multiple or mistaken identities? Trends Cell Biol 28:475–493. https://doi.org/10.1016/j.tcb.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Vesela B, Killinger M, Rihova K et al (2022) Caspase-8 deficient osteoblastic cells display alterations in non-apoptotic pathways. Front Cell Dev Biol 10:1–11. https://doi.org/10.3389/fcell.2022.794407

    Article  Google Scholar 

  5. Xia J, Zhang J, Wang L et al (2021) Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis 12:1–15. https://doi.org/10.1038/s41419-021-04126-4

    Article  CAS  Google Scholar 

  6. Sladky VC, Villunger A (2020) Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 27:2037–2047. https://doi.org/10.1038/s41418-020-0556-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boonstra K, Bloemberg D, Quadrilatero J (2018) Caspase-2 is required for skeletal muscle differentiation and myogenesis. Biochim Biophys Acta - Mol Cell Res 1865:95–104. https://doi.org/10.1016/j.bbamcr.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  8. Xu ZX, Tan JW, Xu H et al (2019) Caspase-2 promotes AMPA receptor internalization and cognitive flexibility via mTORC2-AKT-GSK3β signaling. Nat Commun. https://doi.org/10.1038/s41467-019-11575-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Madadi Z, Akbari-Birgani S, Monfared PD, Mohammadi S (2019) The non-apoptotic role of caspase-9 promotes differentiation in leukemic cells. Biochim Biophys Acta - Mol Cell Res. https://doi.org/10.1016/j.bbamcr.2019.118524

    Article  PubMed  Google Scholar 

  10. Dehkordi HM, Tashakor A, Oconnell E, Fearnhead HO (2020) Apoptosome-dependent myotube formation involves activation of caspase-3 in differentiating myoblasts. Cell Death Dis. https://doi.org/10.1038/s41419-020-2502-4

    Article  Google Scholar 

  11. Weghorst F, Mirzakhanyan Y, Samimi K et al (2020) Caspase-3 cleaves extracellular vesicle proteins during auditory brainstem development. Front Cell Neurosci 14:1–21. https://doi.org/10.3389/fncel.2020.573345

    Article  CAS  Google Scholar 

  12. Kim JS, Ha JY, Yang SJ, Son JH (2018) A novel non-apoptotic role of procaspase-3 in the regulation of mitochondrial biogenesis activators. J Cell Biochem 119:347–357. https://doi.org/10.1002/jcb.26186

    Article  CAS  PubMed  Google Scholar 

  13. Zamaraev AV, Kopeina GS, Prokhorova EA et al (2017) Post-translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol 27:322–339. https://doi.org/10.1016/j.tcb.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  14. Kurokawa M, Kornbluth S (2009) Caspases and Kinases in a Death Grip. Cell 138:838–854. https://doi.org/10.1016/j.cell.2009.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allan LA, Clarke PR (2007) Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 26:301–310. https://doi.org/10.1016/j.molcel.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  16. Byun MR, Choi JW (2018) Phosphorylation of caspase-9 at Thr125 directs paclitaxel resistance in ovarian cancer. Oncotarget 9:1041–1047

    Article  PubMed  Google Scholar 

  17. Guo R, Lin B, Pan JF et al (2016) Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy. Sci Rep 6:1–13. https://doi.org/10.1038/srep32447

    Article  CAS  Google Scholar 

  18. Martin MC, Allan LA, Mancini EJ, Clarke PR (2008) The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125. J Biol Chem 283:3854–3865. https://doi.org/10.1074/jbc.M705647200

    Article  CAS  PubMed  Google Scholar 

  19. Laguna A, Aranda S, Barallobre MJ et al (2008) The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 15:841–853. https://doi.org/10.1016/j.devcel.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  20. Seifert A, Clarke PR (2009) p38α- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress. Cell Signal 21:1626–1633. https://doi.org/10.1016/j.cellsig.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  21. Serrano BP, Hardy JA (2018) Phosphorylation by protein kinase A disassembles the caspase-9 core. Cell Death Differ 25:1025–1039. https://doi.org/10.1038/s41418-017-0052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Serrano BP, Szydlo HS, Alfandari D, Hardy JA (2017) Active site-adjacent phosphorylation at Tyr-397 by c-Abl kinase inactivates caspase-9. J Biol Chem 292:21352–21365. https://doi.org/10.1074/jbc.M117.811976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raina D, Pandey P, Ahmad R et al (2005) c-Abl tyrosine kinase regulates caspase-9 autocleavage in the apoptotic response to DNA damage. J Biol Chem 280:11147–11151. https://doi.org/10.1074/jbc.M413787200

    Article  CAS  PubMed  Google Scholar 

  24. Powley IR, Hughes MA, Cain K, MaCfarlane M (2016) Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene 35:5629–5640. https://doi.org/10.1038/onc.2016.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torres VA, Mielgo A, Barilà D et al (2008) Caspase 8 promotes peripheral localization and activation of Rab5. J Biol Chem 283:36280–36289. https://doi.org/10.1074/jbc.M805878200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barbero S, Barilà D, Mielgo A et al (2008) Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. J Biol Chem 283:13031–13034. https://doi.org/10.1074/jbc.M800549200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Senft J, Helfer B, Frisch SM (2007) Caspase-8 interacts with the p85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility. Cancer Res 67:11505–11509. https://doi.org/10.1158/0008-5472.CAN-07-5755

    Article  CAS  PubMed  Google Scholar 

  28. Alvarado-Kristensson M, Melander F, Leandersson K et al (2004) p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med 199:449–458. https://doi.org/10.1084/jem.20031771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duncan JS, Turowec JP, Duncan KE et al (2011) A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal. https://doi.org/10.1126/scisignal.2001682

    Article  PubMed  Google Scholar 

  30. Rape M (2018) Post-Translational Modifications: Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19:59–70. https://doi.org/10.1038/nrm.2017.83

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalvez F, Lawrence D, Yang B et al (2012) TRAF2 sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Mol Cell 48:888–899. https://doi.org/10.1016/j.molcel.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Kong Y, Zhou Z et al (2013) The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death Dis. https://doi.org/10.1038/cddis.2013.464

    Article  PubMed  PubMed Central  Google Scholar 

  33. Madeo F, Carmona-Gutierrez D, Ring J et al (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231. https://doi.org/10.1016/j.bbrc.2009.02.117

    Article  CAS  PubMed  Google Scholar 

  34. Lee REC, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci U S A 107:13348–13353. https://doi.org/10.1073/pnas.1006610107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shrestha A, Brunette S, Stanford WL, Megeney LA (2019) The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discov 5:1–13. https://doi.org/10.1038/s41421-018-0071-9

    Article  CAS  Google Scholar 

  36. Tan M, Gallegos JR, Gu Q et al (2006) SAG/ROC: SCF B -TrCP E3 ubiquitin ligase promotes pro – caspase-3 degradation as a mechanism. Neoplasia 8:1042–1054. https://doi.org/10.1593/neo.06568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skotte NH, Sanders SS, Singaraja RR, et al (2017) Palmitoylation of caspase-6 by HIP14 regulates its activation. 1:433–444. https://doi.org/10.1038/cdd.2016.139

  38. Chuh KN, Batt AR, Zaro BW et al (2017) The new chemical reporter 6-Alkynyl-6-deoxy-GlcNAc Reveals O-GlcNAc modification of the apoptotic caspases that can block the cleavage/activation of caspase-8. J Am Chem Soc 139:7872–7885. https://doi.org/10.1021/jacs.7b02213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kitevska T, Spencer DMS, Hawkins CJ (2009) Caspase-2: Controversial killer or checkpoint controller? Apoptosis 14:829–848. https://doi.org/10.1007/s10495-009-0365-3

    Article  CAS  PubMed  Google Scholar 

  40. Ito A, Uehara T, Nomura Y (2000) Isolation of Ich-1S (caspase-2S)-binding protein that partially inhibits caspase activity. FEBS Lett 470:360–364. https://doi.org/10.1016/S0014-5793(00)01351-X

    Article  CAS  PubMed  Google Scholar 

  41. Droin N, Beauchemin M, Solary E, Bertrand R (2000) Identification of a caspase-2 isoform that behaves as an endogenous inhibitor of the caspase cascade. Cancer Res 60:7039–7047

  42. Wang QE, Han C, Zhang B et al (2012) Nucleotide excision repair factor XPC enhances DNA damage-induced apoptosis by downregulating the antiapoptotic short isoform of caspase-2. Cancer Res 72:666–675. https://doi.org/10.1158/0008-5472.CAN-11-2774

    Article  CAS  PubMed  Google Scholar 

  43. Vigneswara V, Ahmed Z (2020) The role of caspase-2 in regulating cell fate. Cells. https://doi.org/10.3390/cells9051259

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li P, Zhou L, Zhao T, et al (2017) Caspase-9: Structure, mechanisms and clinical application. Oncotarget 8:23996–24008. https://doi.org/10.18632/oncotarget.15098

  45. Blake D, Radens CM, Ferretti MB et al (2022) Alternative splicing of apoptosis genes promotes human T cell survival. Elife 11:e80953

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koganti S, Burgula S, Bhaduri-McIntosh S (2020) STAT3 activates the anti-apoptotic form of caspase 9 in oncovirus-infected B lymphocytes. Virology 540:160–164. https://doi.org/10.1016/j.virol.2019.11.017

    Article  CAS  PubMed  Google Scholar 

  47. Angelastro JM, Moon NY, Liu DX et al (2001) Characterization of a novel isoform of caspase-9 that inhibits apoptosis *. J Biol Chem 276:12190–12200. https://doi.org/10.1074/jbc.M009523200

    Article  CAS  PubMed  Google Scholar 

  48. Himeji D, Horiuchi T, Tsukamoto H et al (2002) Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood 99:4070–4078. https://doi.org/10.1182/blood.V99.11.4070

    Article  CAS  PubMed  Google Scholar 

  49. Huang Y, Shin NH, Sun Y, Wang KKW (2001) Molecular cloning and characterization of a novel caspase-3 variant that attenuates apoptosis induced by proteasome inhibition. Biochem Biophys Res Commun 283:762–769. https://doi.org/10.1006/bbrc.2001.4871

    Article  CAS  PubMed  Google Scholar 

  50. Végran F, Boidot R, Oudin C et al (2006) Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clin Cancer Res 12:5794–5800. https://doi.org/10.1158/1078-0432.CCR-06-0725

    Article  PubMed  Google Scholar 

  51. Végran F, Boidot R, Solary E, Lizard-Nacol S (2011) A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS ONE. https://doi.org/10.1371/journal.pone.0029058

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee AW, Champagne N, Wang X et al (2010) Alternatively spliced caspase-6B isoform inhibits the activation of caspase-6A. J Biol Chem 285:31974–31984. https://doi.org/10.1074/jbc.M110.152744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou L, Nho K, Haddad MG et al (2021) Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Sci Rep 11:1–17. https://doi.org/10.1038/s41598-021-91367-0

    Article  CAS  Google Scholar 

  54. Dehkordi MH, Munn RGK, Fearnhead HO (2022) Non-canonical roles of apoptotic caspases in the nervous system. Front Cell Dev Biol 10:1–12. https://doi.org/10.3389/fcell.2022.840023

    Article  Google Scholar 

  55. Williams DW, Kondo S, Krzyzanowska A et al (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9:1234–1236. https://doi.org/10.1038/nn1774

    Article  CAS  PubMed  Google Scholar 

  56. Kang Y, Neuman SD, Bashirullah A (2017) Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 8:1–12. https://doi.org/10.1038/s41467-017-00693-3

    Article  CAS  Google Scholar 

  57. Li Z, Jo J, Jia JM et al (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871. https://doi.org/10.1016/j.cell.2010.03.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ertürk A, Wang Y, Sheng M (2014) Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J Neurosci 34:1672–1688. https://doi.org/10.1523/JNEUROSCI.3121-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cusack CL, Swahari V, Hampton Henley W et al (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1–11. https://doi.org/10.1038/ncomms2910

    Article  CAS  Google Scholar 

  60. Campbell DS, Okamoto H (2013) Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J Cell Biol 203:657–672. https://doi.org/10.1083/jcb.201303072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. D’Brot A, Chen P, Vaishnav M et al (2013) Tango7 directs cellular remodeling by the Drosophila apoptosome. Genes Dev 27:1650–1655. https://doi.org/10.1101/gad.219287.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amcheslavsky A, Wang S, Fogarty CE et al (2018) Plasma membrane localization of apoptotic caspases for non-apoptotic functions. Dev Cell 45:450-464.e3. https://doi.org/10.1016/j.devcel.2018.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lamkanfi M, Festjens N, Declercq W et al (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14:44–55. https://doi.org/10.1038/sj.cdd.4402047

    Article  CAS  PubMed  Google Scholar 

  64. Zermati Y, Garrido C, Amsellem S et al (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193:247–254. https://doi.org/10.1084/jem.193.2.247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ribeil JA, Zermati Y, Vandekerckhove J et al (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445:102–105. https://doi.org/10.1038/nature05378

    Article  CAS  PubMed  Google Scholar 

  66. Chen SX, Cherry A, Tari PK et al (2012) The transcription factor MEF2 directs developmental visually driven functional and structural metaplasticity. Cell 151:41–55. https://doi.org/10.1016/j.cell.2012.08.028

    Article  CAS  PubMed  Google Scholar 

  67. Fujita J, Crane AM, Souza MK et al (2008) Caspase activity mediates the differentiation of embryonic stem Cells. Cell Stem Cell 2:595–601. https://doi.org/10.1016/j.stem.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dick SA, Chang NC, Dumont NA et al (2015) Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proc Natl Acad Sci U S A 112:E5246–E5252. https://doi.org/10.1073/pnas.1512869112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khalil H, Bertrand MJM, Vandenabeele P, Widmann C (2014) Caspase-3 and RasGAP: A stress-sensing survival/demise switch. Trends Cell Biol 24:83–89. https://doi.org/10.1016/j.tcb.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  70. Rotschafer SE, Allen-Sharpley MR, Cramer KS (2016) Axonal cleaved caspase-3 regulates axon targeting and morphogenesis in the developing auditory brainstem. Front Neural Circuits 10:1–13. https://doi.org/10.3389/fncir.2016.00084

    Article  CAS  Google Scholar 

  71. Estrugo D, Fischer A, Hess F et al (2007) Ligand bound β1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0000269

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barbero S, Mielgo A, Torres V et al (2009) Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Res 69:3755–3763. https://doi.org/10.1158/0008-5472.CAN-08-3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Orme MH, Liccardi G, Moderau N et al (2016) The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles. Nat Commun 7:1–12. https://doi.org/10.1038/ncomms10972

    Article  CAS  Google Scholar 

  74. Kreuz S, Siegmund D, Rumpf JJ et al (2004) NFκB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166:369–380. https://doi.org/10.1083/jcb.200401036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McCourt C, Maxwell P, Mazzucchelli R et al (2012) Elevation of c-FLIP in castrate-resistant prostate cancer antagonizes therapeutic response to androgen receptor-targeted therapy. Clin Cancer Res 18:3822–3833. https://doi.org/10.1158/1078-0432.CCR-11-3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Henry CM, Martin SJ (2017) Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell 65:715-729.e5. https://doi.org/10.1016/j.molcel.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  77. Weaver BP, Weaver YM, Mitani S, Han M (2017) Coupled caspase and N-end rule ligase activities allow recognition and degradation of pluripotency factor LIN-28 during non-apoptotic development. Dev Cell 41:665-673.e6. https://doi.org/10.1016/j.devcel.2017.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang YJ, Liu MG, Wang JH et al (2020) Restoration of cingulate long-term depression by enhancing non-apoptotic caspase 3 alleviates peripheral pain hypersensitivity. Cell Rep. https://doi.org/10.1016/j.celrep.2020.108369

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hrdinka M, Yabal M (2019) Inhibitor of apoptosis proteins in human health and disease. Genes Immun 20:641–650. https://doi.org/10.1038/s41435-019-0078-8

    Article  PubMed  Google Scholar 

  80. Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: More than just inhibitors of apoptosis proteins. Cell Cycle 7:1036–1046. https://doi.org/10.4161/cc.7.8.5783

    Article  CAS  PubMed  Google Scholar 

  81. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ (2003) Mechanism of XIAP-Mediated Inhibition of Caspase-9 fector caspases are produced in cells as catalytically. Mol Cell 11:519–527

    Article  CAS  PubMed  Google Scholar 

  82. Scott FL, Denault JB, Riedl SJ et al (2005) XIAP inhibits caspase-3 and -7 using two binding sites: Evolutionary conserved mechanism of IAPs. EMBO J 24:645–655. https://doi.org/10.1038/sj.emboj.7600544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gibon J, Unsain N, Gamache K et al (2016) The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J 30:3083–3090. https://doi.org/10.1096/fj.201600384R

    Article  CAS  PubMed  Google Scholar 

  84. Unsain N, Higgins JM, Parker KN et al (2013) XIAP regulates caspase activity in degenerating axons. Cell Rep 4:751–763. https://doi.org/10.1016/j.celrep.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  85. Kuranaga E, Kanuka H, Tonoki A et al (2006) Drosophila IKK-Related Kinase Regulates Nonapoptotic Function of Caspases via Degradation of IAPs. Cell 126:583–596. https://doi.org/10.1016/j.cell.2006.05.048

    Article  CAS  PubMed  Google Scholar 

  86. Kuo CT, Zhu S, Younger S et al (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating drosophila sensory neuron dendrite pruning. Neuron 51:283–290. https://doi.org/10.1016/j.neuron.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  87. Zhang J, Zheng X, Wang P et al (2021) Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis 26:24–37. https://doi.org/10.1007/s10495-020-01653-x

    Article  CAS  PubMed  Google Scholar 

  88. Shin S, Lee Y, Kim W et al (2005) Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J 24:3532–3542. https://doi.org/10.1038/sj.emboj.7600827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lim Y, De Bellis D, Sandow JJ et al (2021) Phosphorylation by Aurora B kinase regulates caspase-2 activity and function. Cell Death Differ 28:349–366. https://doi.org/10.1038/s41418-020-00604-y

    Article  CAS  PubMed  Google Scholar 

  90. Matthess Y, Raab M, Sanhaji M et al (2010) Cdk1/Cyclin B1 controls fas-mediated apoptosis by regulating caspase-8 activity. Mol Cell Biol 30:5726–5740. https://doi.org/10.1128/mcb.00731-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matthess Y, Raab M, Knecht R et al (2014) Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol 8:596–608. https://doi.org/10.1016/j.molonc.2013.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mandal R, Raab M, Matthess Y et al (2014) PERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner. Mol Oncol 8:232–249. https://doi.org/10.1016/j.molonc.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  93. Peng C, Cho YY, Zhu F et al (2011) Phosphorylation of caspase-8 (Thr-263) by ribosomal S6 kinase 2 (RSK2) mediates caspase-8 ubiquitination and stability. J Biol Chem 286:6946–6954. https://doi.org/10.1074/jbc.M110.172338

    Article  CAS  PubMed  Google Scholar 

  94. Allan LA, Morrice N, Brady S et al (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654. https://doi.org/10.1038/ncb1005

    Article  CAS  PubMed  Google Scholar 

  95. Seifert A, Allan LA, Clarke PR (2008) DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J 275:6268–6280. https://doi.org/10.1111/j.1742-4658.2008.06751.x

    Article  CAS  PubMed  Google Scholar 

  96. Brady SC, Allan LA, Clarke PR (2005) Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol 25:10543–10555. https://doi.org/10.1128/mcb.25.23.10543-10555.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martin MC, Allan LA, Lickrish M et al (2005) Protein kinase A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c. J Biol Chem 280:15449–15455. https://doi.org/10.1074/jbc.M414325200

    Article  CAS  PubMed  Google Scholar 

  98. Liao G, Wang R, Tang DD (2022) Plk1 regulates caspase-9 phosphorylation at ser-196 and apoptosis of human airway smooth muscle cells. Am J Respir Cell Mol Biol 66:223–234. https://doi.org/10.1165/rcmb.2021-0192OC

    Article  CAS  PubMed  Google Scholar 

  99. Li X, Wen W, Liu K et al (2011) Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J Biol Chem 286:22291–22299. https://doi.org/10.1074/jbc.M111.236596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Eron SJ, Raghupathi K, Hardy JA (2017) Dual Site Phosphorylation of Caspase-7 by PAK2 Blocks Apoptotic Activity by Two Distinct Mechanisms. Structure 25:27–39. https://doi.org/10.1016/j.str.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  101. Cao Q, Wang XJ, Liu CW et al (2012) Inhibitory mechanism of caspase-6 phosphorylation revealed by crystal structures, molecular dynamics simulations, and biochemical assays. J Biol Chem 287:15371–15379. https://doi.org/10.1074/jbc.M112.351213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Velázquez-Delgado EM, Hardy JA (2012) Phosphorylation regulates assembly of the caspase-6 substrate-binding groove. Structure 20:742–751. https://doi.org/10.1016/j.str.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thomas ME, Grinshpon R, Swartz P, Clark AC (2018) Modifications to a common phosphorylation network provide individualized control in caspases. J Biol Chem 293:5447–5461. https://doi.org/10.1074/jbc.RA117.000728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Royan Institute and the Iran National Science Foundation (INSF97015084) for their support.

Funding

This work was supported by a grant from Royan Institute and the Iran National Science Foundation (INSF97015084).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by NG. JD and SP commented on previous versions of the manuscript. RY helped with illustrations. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jamshid Davoodi or Sara Pahlavan.

Ethics declarations

Conflict of interests

The authors report there are no competing interests to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, N., Yaghubi, R., Davoodi, J. et al. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04870-5

Keywords

Navigation