Skip to main content
Log in

Phase equilibria in the V2O5-Cr2O3 system

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The phase equilibria in the total range of component concentrations in the V2O5-Cr2O3 system up to 1000 °C were studied by means of phase powder diffraction and DTA. Two compounds exist in the system: CrVO4, melting incongruently at 860±5 °C, and Cr2V4O13, which decomposes in the solid state at 640±5 °C to CrVO4(s) and V2O5(s). At 645±5 °C, CrVO4 and V2O5 form a eutectic mixture with the CrVO4 content not exceeding 2% mol.

Zusammenfassung

Mittels DTA und Pulverdiffraktionsaufnahmen wurde das Phasengleichgewicht des Systems V2O5-Cr2O3 bis 1000 °C im gesamten Konzentrationsbereich untersucht. Innerhalb des Systemes existieren zwei Verbindungen: CrVO4 mit einem inkongruentem Schmelzpunkt bei 860±5 °C und Cr2V4O13, das sich in festem Zustand bei 640±5 °C in CrVO4(s) und V2O5(s) zersetzt. Bei 645±5 °C bilden CrVO4 und V2O5 ein eutektisches Gemisch mit einem maximalen CrVO4-Gehalt von 2 mol%.

Резюме

Методом DTA и порошкого р ентгенофазового анализа изучено фазо вое равновесие системы V2О5-Cr2О3 до темп ературы 1000° и во всей области концентраци й компонентов. Установлено наличие двух соединений: CrVO4, пла вящегося инконгруэнтно при 860±5° и Cr2V4O13, разлагающегося в твердом состоянии пр и 640±5° до твердых CrVO4 и V2O5, которые при температуре 645±5° об разуют эвтектическу ю смесь с содержанием CrVO4, не превышающим 2 мольных %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Cirilli, A. Burdese and C. Brisi, M. Italiana 7 (1956) 309.

    Google Scholar 

  2. A. Burdese, Ann. Chim. 47 (1957) 797.

    Google Scholar 

  3. E. C. Compleston, M. Y. C. Simons and B. Barham, Trans. I. Br. Ceram. Soc. 76 (1977) 68.

    Google Scholar 

  4. J. Aminel, D. Colaitis and D. Olivier, C. R. Acad. Sci., Paris 263 (1966) 224.

    Google Scholar 

  5. R. C. Kerby and J. R. Wilson, Can. J. Chem. 51 (1973) 1032.

    Google Scholar 

  6. S. M. Tsheshnickii, A. A. Fotev and L. L. Surat, Zh. Neorg. Khim. 28 (1983) 2699.

    Google Scholar 

  7. G. Lucas, M. Weddle and A. Preece, J. Iron and Steel Inst. 179 (1955) 342.

    Google Scholar 

  8. R. N. Pletnev, V. N. Lisson and I. I. Miller, Inst. Khim. Ural. Nauch. Tsents. AN SSSR 35 (1976) 92.

    Google Scholar 

  9. D. Olivier and B. Combe, C. R. Acad. Sci., Paris 267 (1968) 877.

    Google Scholar 

  10. D. Olivier, C. R. Acad. Sci., Paris, 364 C (1967) 1176.

    Google Scholar 

  11. U. Akifumi et al., Nippon Kagaku Kaishi 9 (1981) 1513.

    Google Scholar 

  12. L. N. Kurina et al., Kinet. Katal. 11 (1970) 753.

    Google Scholar 

  13. Joint Committee of Powder Diffraction File: CrVO4: 16–256; Cr2O3: 6–0504; V2O5: 9–387.

  14. D. Olivier and P. Rabette, C. R. Acad. Sci., Paris 265 (1967) 1451.

    Google Scholar 

  15. J. Amiel, D. Olivier and M. Dessolin, C. R. Acad. Sci., Paris, 264 (1967) 1045.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walczak, J., Filipek, E. Phase equilibria in the V2O5-Cr2O3 system. Journal of Thermal Analysis 35, 69–76 (1989). https://doi.org/10.1007/BF01914265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01914265

Keywords

Navigation