Skip to main content
Log in

Methods for calculating the physical properties of polymers

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

The approaches that derive the best predictions of physical properties of polymers from the chemical structure of their repeating unit are the van Krevelen, Bicerano, and Askadskii-Matveev. The potential of these three approaches is analyzed. All of the approaches are computerized and allow online predictions to be made. The PDTools and SYNTHIA programs are briefly overviewed, and the Cascade software (developed at the Nesmeyanov Institute of Organoelement Compounds) is described in detail. All of the approaches and the corresponding computer programs make it possible to estimate over 120 physical properties of polymers, including their volumetric, thermal, mechanical, thermophysical, optical, dielectric, and barrier properties. Particular attention is focused on the solubility and miscibility of polymers and on the properties of copolymers, polymer blends, and nanocomposites. The Cascade software provides the means to carry out computer syntheses of polymers with preset properties, the intervals of which are input by the user, and to calculate the dependences of these properties on temperature, plasticizer and nanoparticle concentrations, and nanoparticle size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Krevelen, D.W. and Nijenhuis, K., Properties of Polymers, Amsterdam: Elsevier, 2009.

    Google Scholar 

  2. van Krevelen, D.W., Properties of Polymers, Amsterdam: Elsevier, 1997.

    Google Scholar 

  3. Bicerano, J., Prediction of Polymer Properties, New York: Marcel Dekker, 1993.

    Google Scholar 

  4. Askadskii, A.A. and Matveev, Yu.I., Khimicheskoe stroenie i fizicheskie svoistva polimerov (Chemical Structure and Physical Properties of Polymers), Moscow: Khimiya, 1983.

    Google Scholar 

  5. Askadskii, A.A. and Kondrashchenko, V.I., Komp’yuternoe materialovedenie polimerov (Computational Material Science of Polymers), vol. 1: Atomno-molekulyarnyi uroven’ (Atomic-Molecular Level), Moscow: Nauchnyi Mir, 1999.

    Google Scholar 

  6. Askadskii, A.A., Computational Materials Science of Polymers, Cambridge: Cambridge Int., 2003.

    Google Scholar 

  7. Askadskii, A.A., Physical Properties of Polymers: Prediction and Control, Amsterdam: Gordon and Breach, 1996.

    Google Scholar 

  8. Askadskii, A.A. and Khokhlov, A.R., Vvedenie v fiziko-khimiyu polimerov (Introduction to Physical Chemistry of Polymers), Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  9. Askadskii, A.A., Struktura i svoistva teplostoikikh polimerov (Structure and Properties of Heat-Resistant Polymers), Moscow: Khimiya, 1981.

    Google Scholar 

  10. Askadskii, A.A., Physical properties of polymers, in Encyclopedia of Fluid Mechanics, vol. 9: Polymer Flow Engineering, Houston, London, Paris, Zurich, Tokyo: Gulf, 1990.

    Google Scholar 

  11. Askadskii, A.A., Analysis of the Structure and Properties of High-Crosslinked Polymer Networks, London, Paris, New York, Melbourne: Harwood, 1992.

    Google Scholar 

  12. Bolobova, A.V., Askadskii, A.A., Kondrashchenko, V.I., and Rabinovich, M.L., Teoreticheskie osnovy biotekhnologii drevesnykh kompozitov. Fermenty, modeli, protsessy (Theoretical Bases of Biotechnology of Wood Composites: Ferments, Models, and Processes), Moscow: Nauka, 2002.

    Google Scholar 

  13. Askadskii, A.A. Russ. Chem. Rev., 1999, vol. 68, no. 4, p. 317.

    CAS  Google Scholar 

  14. Askadskii, A.A. Russ. Chem. Rev., 1998, vol. 67, no. 8, p. 681.

    Google Scholar 

  15. Askadskii, A.A., Vysokomol. Soedin., Ser. A, 1995, vol. 37, no. 2, p. 332.

    CAS  Google Scholar 

  16. Askadskii, A.A., Mekh. Kompoz. Mater., 1990, no. 6, p. 963.

    Google Scholar 

  17. Askadskii, A.A., Vozmozhnosti predskazaniya svoistv lineinykh i setchatykh polimerov i komp’yuternogo sinteza polimerov s zadannymi svoistvami (Prediction of Properties of Linear and Cross-Linked Polymers and Computational Synthesis of Polymers with Desired Properties), in Metody komp’yuternogo modelirovaniya dlya issledovaniya polimerov i biopolimerov (Methods for Computer Simulation Studies of Polymers and Biopolymers), Moscow: LIBROKOM, 2009.

    Google Scholar 

  18. Kitaigorodskii, A.I., Organicheskaya kristallokhimiya (Organic Crystallochemistry), Moscow: Izd. Akad. Nauk SSSR, 1955.

    Google Scholar 

  19. Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glass, New York: Wiley, 1968.

    Google Scholar 

  20. Askadskii, A.A., Vysokomol. Soedin., Ser. A, 2012, vol. 54, no. 11, p. 849.

    CAS  Google Scholar 

  21. Matveeva, T.P., Matveev, Yu.I., and Askadskii, A.A., Mekh. Kompoz. Mater., 1986, no. 2, p. 201.

    Google Scholar 

  22. Razmadze, T.R. and Askadskii, A.A., Vysokomol. Soedin., Ser. A, 1991, vol. 33, no. 5, p. 1141.

    Google Scholar 

  23. Matveev, Yu.I. and Askadskii, A.A., Vysokomol. Soedin., Ser. B, 1994, vol. 36, no. 3, p. 436.

    CAS  Google Scholar 

  24. Askadskii, A.A., Matveev, Yu.I., and Matevosyan, M.S., Vysokomol. Soedin., Ser. A, 1990, vol. 32, no. 10, p. 2157.

    CAS  Google Scholar 

  25. Polymer Blends, vol. 1: Formulation, Paul, D.R. and Bucknall, C.B., Eds., New York: Wiley, 2000.

    Google Scholar 

  26. Kuleznev, V.N., Smesi polimerov (struktura i svoistva) (Polymer Blends: Structure and Properties), Moscow: Khimiya, 1980.

    Google Scholar 

  27. Kuleznev, V.N., Smesi i splavy polimerov (Polymer Blends and Alloys), St. Petersburg: NOT, 2013.

    Google Scholar 

  28. Schweizer, K.S. and Curro, J.G., Adv. Chem. Phys., 1997, vol. 1, p. 98.

    Google Scholar 

  29. Freed, K.F. and Dudowicz, J., Mod. Trends Polym. Sci., 1995, vol. 3, p. 248.

    CAS  Google Scholar 

  30. Freed, K.F., Dudowicz, J., and Forman, K.W., J. Chem. Phys., 1998, vol. 108, p. 7881.

    CAS  Google Scholar 

  31. Kochnev, A.M., Zaikin, A.E., Galibeev, S.S., and Arkhireev, V.P., Fizikokhimiya polimerov (Physical Chemistry of Polymers), Kazan: Fen, 2003.

    Google Scholar 

  32. Schneider, H.A., J. Res. Natl. Inst. Stand. Technol., 1997, vol. 102, no. 2, p. 229.

    CAS  Google Scholar 

  33. Korshak, V.V., Vinogradova, S.V., and Salazkin, S.N., Vysokomol. Soedin., 1962, vol. 4, no. 3, p. 339.

    CAS  Google Scholar 

  34. Korshak, V.V., Vinogradova, S.V., Baskakov, A.N., and Valetskii, P.M., Vysokomol. Soedin., 1965, vol. 7, no. 9, p. 1633.

    CAS  Google Scholar 

  35. Askadskii, A.A., Simonov-Emel’yanov, I.D., Klinskikh, A.F., and Sergeeva, S.O., Polym. Sci., Ser. A, 1999, vol. 41, no. 7, p. 757.

    Google Scholar 

  36. Askadskii, A.A., Matveev, Yu.I., Slabkaya, G.L., Luchkina, L.V., Kovriga, O.V., and Ioffe, A.I., Polym. Sci., Ser. A, 2008, vol. 50, no. 4, p. 462.

    Google Scholar 

  37. Askadskii, A.A., Matseevich, T.A., Popova, M.N., and Kondrashchenko, V.I., Polym. Sci., Ser. A, 2015, vol. 57, no. 2, p.186.

    CAS  Google Scholar 

  38. Godovskii, Yu.K., Teplofizika polimerov (Thermophysics of Polymers), Moscow: Khimiya, 1982.

    Google Scholar 

  39. Berman, R., Thermal Conductivity in Solids (Oxford Physics), Oxford: Oxford Univ., 1976.

    Google Scholar 

  40. Eiremann, K., Kolloid.-Z. u. Z. Polymere, 1964, vol. 198, nos. 1–2, p. 5.

    Google Scholar 

  41. Vargaftik, N.B., Filippov, L.P., Tarzimanov, A.A., and Totskii, E.E., Teploprovodnost’ zhidkostei i gazov (Thermal Conductivity of Liquids and Gases), Moscow: Izdatel’stvo Standartov, 1978.

    Google Scholar 

  42. Askadskii, A.A., Markov, V.A., and Petunova, M.D., Polym. Sci., Ser. A, 2013, vol. 55, no. 12, p. 772.

    CAS  Google Scholar 

  43. Physical Properties of Polymer Handbook, Mark, J.E., Ed., New York: Woodbury, 1996.

    Google Scholar 

  44. Mojumdar, S.C., Raki, L., Mathis, N., Schimdt, K., and Lang, S., J. Therm. Anal. Calorim., 2006, vol. 85, no. 1, p. 119.

    CAS  Google Scholar 

  45. Askadskii, A., Afans’ev, E., Matseevich, T., Popova, M., and Kondrashchenko, V., Qi shicheng, Adv. Mater. Res., 2014, vols. 1033–1034, p. 939.

    Google Scholar 

  46. Pauly, S., in: Polymer Handbook, Brandrup, J. and Immergut, E.H., Eds., New York: Wiley, 1989, 3rd ed.; Membrane Handbook, Ho, W. and Sirkar, K.K., Eds., New York: Van Nostrand, 1992.

  47. Paul, D.R. and Yampolskii, Yu.P., Polymeric Gas Separation Membranes, Boca Raton: CRC Press, 1994.

    Google Scholar 

  48. Water Transport in Synthetic Polymers, Iordanskii, A.L., Startsev, O.V., and Zaikov, G.E., Eds., New York: Nova, 2003.

    Google Scholar 

  49. Iordanskii, A.L., Rudakova, T.E., and Zaikov, G.E., Interaction of Polymers with Bioactive and Corrosive Media, Utrecht: VSP, 1994.

    Google Scholar 

  50. Porter, M.C., Handbook of Industrial Membrane Technology, Oak Ridge, NJ: Noyes, 1989.

    Google Scholar 

  51. Vieth, W.R., Diffusion in and through Polymers: Principles and Applications, Munich: Hanser, 1991.

    Google Scholar 

  52. Jonquieres, A., Clement, R., and Lochon, P., Prog. Polym. Sci., 2002, vol. 27, p. 1803.

    CAS  Google Scholar 

  53. Baker, R.W., Ind. Eng. Chem., 2002, vol. 41, p. 1393.

    CAS  Google Scholar 

  54. Huang, J., Cranford, R.J., Matsuura, T., and Roy, C., J. Membr. Sci., 2003, vol. 215, p. 129.

    CAS  Google Scholar 

  55. Roberts, A.P., Henry, B.M., Sutton, A.P., Grovenor, C.R.M., Briggs, G.A.D., Miyamoto, T., Kano, M., Tsukahara, Y., and Yanaka, M., J. Membr. Sci., 2002, vol. 208, p. 75.

    CAS  Google Scholar 

  56. Cranford, R.J., Darmstadt, H., Yang, J., and Roy, C., J. Membr. Sci., 1999, vol. 155, p. 231.

    CAS  Google Scholar 

  57. Huang, J., Cranford, R.J., Matsuura, T., and Roy, C., J. Membr. Sci., 2003, vol. 215, p. 129.

    CAS  Google Scholar 

  58. Lokhandwala, K.A., Nadakatti, S.M., and Stern, S.A., J. Polym. Sci., Part B: Polym. Phys., 1995, vol. 33, p. 965.

    CAS  Google Scholar 

  59. Paul, D.R., Water vapor sorption and diffusion in glassy polymers, Macromol. Symp., 1999, vol. 138, p. 13.

    CAS  Google Scholar 

  60. Huang, J., Cranford, R.J., Matsuura, T., and Roy, C., J. Appl. Polym. Sci., 2002, vol. 85, p. 139.

    CAS  Google Scholar 

  61. Okamoto, K., et al., J. Polym. Sci., Polym. Phys. Ed., 1992, vol. 30, p. 1223.

    CAS  Google Scholar 

  62. Watari, T., Fang, J., Guo, X., Tanaka, K., Kita, H., and Okamoto, K., ACS Symposium 876, Advanced Materials for Membrane Separations, 2004, p. 253.

    Google Scholar 

  63. Rivin, D., Kendrick, C.E., Gibson, P.W., and Schneider, N.S., Polymer, 2001, vol. 42, p. 623.

    CAS  Google Scholar 

  64. Huang, J., Cranford, R.J., Matsuura, T., and Roy, C., J. Membr. Sci., 2003, vol. 215, p. 129.

    CAS  Google Scholar 

  65. Mohr, J.M. and Paul, D.R., J. Appl. Polym. Sci., 1991, vol. 42, p. 1711.

    CAS  Google Scholar 

  66. Stannett, V.T., Ranade, G.R., and Koros, W.J., J. Membr. Sci., 1982, vol. 10, p. 219.

    CAS  Google Scholar 

  67. Plate, N.A., Bokarev, A., Kaliuszhnyi, N., and Yampolskii, Yu., J. Membr. Sci., 1991, vol. 60, p. 13.

    CAS  Google Scholar 

  68. Askadskii, A.A. and Klinskikh, A.F., Polym. Sci., Ser. A, 1999, vol. 41, no. 1, p. 77.

    Google Scholar 

  69. Askadskii, A.A. and Klinskikh, A.F., Plast. Massy, 1998, no. 4, p. 29.

    Google Scholar 

  70. Computer Aids to Chemistry, Vernin, G., and Shanon, M., Eds., Chichester: Ellis Horwood, 1986.

    Google Scholar 

  71. Coats, R.B. and Vlaeminke, I., Man-computer interface, Oxford: Blackwell, 1987.

    Google Scholar 

  72. Morgan, H.L., J. Chem. Soc., 1976, vol. 7, p. 154.

    Google Scholar 

  73. Roy, N.K., Potter, W.D., and Landau, D.P., IEEE Trans. Neural Netw., 2006, vol. 17, no. 4, p. 1001.

    Google Scholar 

  74. Afantitis, A., Melagraki, G., Makridima, K., Alexandridis, A., and Sarimveis, H., J. Mol. Struct.: THEOCHEM, 2005, vol. 716, p. 193.

    CAS  Google Scholar 

  75. Li, Y.C., Wang, C.P., and Liu, X.J., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2008, vol. 32, p. 217.

    CAS  Google Scholar 

  76. Engels, T.A.P., Schrauwen, B.A.G., Van Breemen, L.C.A., and Govaert, L.E., Int. Polym. Process., 2009, vol. 24, no. 2, p. 167.

    CAS  Google Scholar 

  77. Kolaroeik, J., Fambri, L., Pegoretti, A., and Penati, A., Polym. Adv. Technol., 2000, vol. 11, p. 75.

    Google Scholar 

  78. Kate Kunal, H., Enneti Ravi, K., Park Seong-Jin, German Randall, M., and Atre Sundar, Crit. Rev. Solid State Mater. Sci., 2014, vol. 39, p. 197.

    Google Scholar 

  79. Valavala, P.K. and Odegard, G.M., Rev. Adv. Mater. Sci., 2005, vol. 9, p. 34.

    CAS  Google Scholar 

  80. Zhu, K. and Schmauder, S., Comput. Mater. Sci., 2003, vol. 28, p. 743.

    CAS  Google Scholar 

  81. Dietzhausen, H., Dong, M., and Schmauder, S., Comput. Mater. Sci., 1998, vol. 13, p. 39.

    Google Scholar 

  82. Dong, S., Bidlingmaier, T., and Wanner, A., Comput. Mater. Sci., 1997, vol. 9, p. 121.

    CAS  Google Scholar 

  83. Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J., Sternstein, S.S., and Buehler, M.J., Polymer, 2010, vol. 51, p. 3321.

    CAS  Google Scholar 

  84. Kalfus, J. and Jancar, J., J. Polym. Sci., Polym. Phys. Ed., 2007, vol. 45, p. 1380.

    CAS  Google Scholar 

  85. Mohammed Sharaf, A. and James Mark, E., Polymer, 2004, vol. 45, p. 3943.

    Google Scholar 

  86. Lee, J.-Y., Zhang, Q., Emrick, T., and Crosby, A.J., Macromolecules, 2006, vol. 39, p. 7392.

    CAS  Google Scholar 

  87. Miltner, H.E., van Assche, G., Pozsgay, A., Pukanszky, B., and van Mele, B., Polymer, 2006, vol. 47, p. 826.

    CAS  Google Scholar 

  88. Sumin Kim, Jungki Seo, and Lawrence, D.T., Composites, Part A, 2010, vol. 4, p. 581.

    Google Scholar 

  89. Hu, H., Wang, X., Wang, J., Wan, L., Liu, F., and Zheng, H., Chem. Phys. Lett., 2010, no. 4, p. 484.

    Google Scholar 

  90. Kim Yoong Ahm, Takuaya, H., Morinobu, E., Gotoh Yasuo, Noriaki, W., and Sei Junji, Scr. Mater., 2006, vol. 54, p. 31.

    CAS  Google Scholar 

  91. Raos, G. and Vacatello, M., Prog. Polym. Sci., 2008, vol. 33, p. 683.

    Google Scholar 

  92. Brown, D., Marcadon, V., Mele, P., and Alberola, N.D., Macromolecules, 2008, vol. 10, p. 1021.

    Google Scholar 

  93. Jia, Q.M., Zheng, M., Zhu, Y.C., Li, J.B., and Xu, C.Z., Eur. Polym. J., 2007, vol. 43, p. 35.

    CAS  Google Scholar 

  94. Xia, H. and Song, M., Thermochim. Acta, 2005, vol. 429, p. 1.

    CAS  Google Scholar 

  95. Bokobza, L., J. Non-Cryst. Solids, 2006, vol. 352, p. 4969.

    Google Scholar 

  96. Poole, P.H., Donati, C., and Glotzer, S.C., Phys. A, 1998, vol. 261, p. 51.

    CAS  Google Scholar 

  97. Rittigstein, P. and Torkelson, J.M., J. Polym. Sci., Part B: Polym. Phys., 2006, vol. 44, p. 2935.

    CAS  Google Scholar 

  98. Cavallo, A., Muller, M., Wittmer, J.P., Johner, A., and Binder, K., J. Phys.: Condens. Matter., 2005, vol. 17, p. 1697.

    Google Scholar 

  99. Knauert, S.T., Douglas, J.F., and Starr, F.W., Macromolecules, 2010, vol. 43, p. 3438.

    CAS  Google Scholar 

  100. Andrews, R. and Weisenberger, M.C., Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, p. 31.

    CAS  Google Scholar 

  101. Douglas, J.F. and Garboczi, E.J., in: Advances in Chemical Physics, Prigogine, I. and Rice, S.A., Eds., New York: Wiley, 1995, vol. 41, p. 85.

  102. Starr, F.W., Schroder, T.B., and Glotzer, S.C., Phys. Rev., 2001, vol. E64:021, p. 802.

    Google Scholar 

  103. Starr, F.W., Schroder, T.B., and Glotzer, S.C., Macromolecules, 2002, vol. 35, p. 4481.

    CAS  Google Scholar 

  104. Starr, F.W., Douglas, J.F., and Glotzer, S.C., J. Chem. Phys., 2003, vol. 119, p. 1777.

    CAS  Google Scholar 

  105. Ajloo D., Sharifian A., and Behniafar, H., Bull. Korean Chem. Soc., 2008, vol. 29, no. 10, p. 2009.

    CAS  Google Scholar 

  106. Bystritskaya, E.V., Pomerantsev, A.L., and Rodionova, O.E., Chemom. Intell. Lab. Syst., 1999, vol. 47, p. 175.

    CAS  Google Scholar 

  107. Miller-Chou, B.A. and Koenig, J.L., Prog. Polym. Sci., 2003, vol. 28, p. 1223.

    CAS  Google Scholar 

  108. Jie Xu, Hongtao Liu, Wenbin Li, Hantao Zou, and Weilin Xu, Macromol. Theory Simul., 2008, vol. 17, p. 470.

    Google Scholar 

  109. Singh Ramvir, Sharma, P.K., Bhoopal, R.S., and Verma, L.S., Indian J. Pure Appl. Phys., 2011, vol. 49, p. 344.

    CAS  Google Scholar 

  110. Bogdanic, G., Hem. Ind., 2006, vol. 60, nos. 11–12, p. 287.

    CAS  Google Scholar 

  111. Adams, N. and Schubert, U.S., J. Comb. Chem., 2004, vol. 6, p. 12.

    CAS  Google Scholar 

  112. Salame, M., Polym. Eng. Sci., 1986, vol. 26, no. 22, p. 1543.

    CAS  Google Scholar 

  113. Wang, C.C., Pilania, G., Boggs, S.A., Kumar, S., Breneman, C., and Ramprasad, R., Polymer, 2014, vol. 55, no. 4, p. 979.

    CAS  Google Scholar 

  114. Wang, C.C., Pilania, G., and Ramprasad, R., Phys. Rev. B, 2013, vol. 87, 035103.

    Google Scholar 

  115. Baldwin, A.F., Ma, R., Wang, C., Ramprasad, R., and Sotzing, G.A., J. Appl. Polym. Sci., 2013, vol. 130, p. 1276.

    CAS  Google Scholar 

  116. Matseevich, T., Popova, M., Kondrashchenko, V., and Askadskii, A., Appl. Mech. Mater., 2014, vols. 584–586, p. 1709.

    Google Scholar 

  117. Matseevich, T., Popova, M., Kondrashchenko, V., and Askadskii, A., Appl. Mech. Mater., 2014, vols. 584–586, p. 1714.

    Google Scholar 

  118. Askadskii, A., Popova, M., Matseevich, T., and Afanasyev, E., Adv. Mater. Res., 2014, vols. 864–867, no. 2014, p. 640.

    Google Scholar 

  119. Askadskii, A., Popova, M., Matseevich, T., and Kurskaya, E., Adv. Mater. Res., 2014, vols. 864–867, no. 2014, p. 751.

    Google Scholar 

  120. Askadskii, A., Matseevich, T., Popova, M., Kondrashchenko, V., and Qi, S., Adv. Mater. Res., 2014, vols. 1033–1034, no. 2014, p. 948.

    Google Scholar 

  121. Matveev, Yu.I. and Askadskii, A.A., Polym. Sci., Ser. A, 2010, vol. 52, no. 12, p. 1245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Askadskii.

Additional information

Original Russian Text © A.A. Askadskii, 2015, published in Obzornyi Zhurnal po Khimii, 2015, Vol. 5, No. 2, pp. 101–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askadskii, A.A. Methods for calculating the physical properties of polymers. Ref. J. Chem. 5, 83–142 (2015). https://doi.org/10.1134/S2079978015020016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978015020016

Keywords

Navigation