Skip to main content
Log in

Fatcors influencing thermoanalytical curves

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The experimental conditions influencing thermoanalytical results are summarized and subdivided into three groups: sample properties, experimental parameters, apparative parameters. By means of selected examples, some experimental conditions are discussed, mainly for TG and DTA. Special care is given to particle size, the atmosphere as part of the reacting system and as experimental parameter, the buoyancy problem, dynamic re-impact phenomena of molecules, heat transfer and supercooling problems in melting, and DTA under different isobaric conditions. In quantitative thermal analysis, experimental conditions need careful control. Standard reference materials as well as automatic data collection and processing techniques help in achieving better thermoanalytical results.

Résumé

On passe en revue les conditions d'expériences qui influencent les rés iltats de l'analyse thermique et on les classe en trois groupes: les propriétés de l'échantillon, les paramètres d'expérience et les paramètres propres aux appareils. On discute, à l'aide d'exemples, quelques conditions d'expérience, en considérant surtout la TG et l'ATD. On examine en particulier la grandeur des particules, l'atmosphère en tant que partie du système réagissant et en tant que paramètre d'expérience, le problème de la force ascensionnelle, le phénomène de choc dynamique répété des molécules, le transfert de chaleur et les problèmes de retard à la fusion lors du refroidissement ainsi que l'ATD sous diverses conditions isobares. Lors de l'analyse thermique quantitative, les conditions d'expériences doivent être minutieusement contrôlées. L'emploi de substances étalons de référence ainsi que l'acquisition et le traitement automatiques des données peuvent contribuer à parvenir à de meilleurs résultats.

Zusammenfassung

Die die thermoanalytischen Ergebnisse beeinflussenden Versuchsbedingungen wurden zusammengefaßt und in drei Gruppen unterteilt: Eigenschaften der Probe, Versuchsparameter, Parameter des Geräts. An Hand ausgewählter Beispiele werden einige Versuchsbedingungen, hauptsächlich betreffs TG und DTA, erörtert. Eine besondere Aufmerksamkeit wird der Partikelgröße, der Atmosphäre als Teil des Reaktionssystems und als Versuchsparameter, dem Problem der Auftriebskraft, dem dynamischen Wieder-Einschlagphänomen der Moleküle, der Wärmeübertragung und den Problemen der Unterkühlung beim Schmelzen und der DTA bei verschiedenen isobaren Bedingungen gewidmet. Bei der quantitativen Thermoanalyse benötigen die Versuchsbedingungen ein sorgfältiges Regeln. Standard Referenzsubstanzen sowie Techniken der automatischen Datensammlung und -verarbeitung können zum Erhalten besserer thermoanalytischer Ergebnisse verhelfen.

Резюме

Экспериментальные у словия, затрагивающи е термоаналитические результаты, обобщены и подраздел ены на три группы: свой ства вещества, эксперимен таль-ные и аппаратурные парам етры. На примере выбра нных образцов обсуждены н екоторые экспериментальные р езультаты, главным об разом для ТГ и ДТА. Особое вни мание уделено размеру част иц, атмосфере как част и реакционной системы и как эксперименталь ному параметру, проблеме плавучести, явлению динамическо го соударения молекул, проблемам пе реноса тепла и сверхо хлаждения при плавлении и ДТА пр и различных изобарных условиях. В количеств енном термическом анализе экспериментальные условия требуют тщат ельного контроля. Стандартные материа лы сравнения наряду с техникой авт оматического сбора д анных и обработки, помогают д остичь лучших термоаналити ческих результатов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Oswald andE. Dubler, Reviews on Analytical Chemistry, EUROANALYSIS II, Budapest 1975 (ed. W. Fresenius), Akadémiai Kiadó, Budapest, 1977, p. 191.

    Google Scholar 

  2. H. G. Wiedemann, Ph. D. Thesis, Univ. of Bern, Switzerland, 1971.

    Google Scholar 

  3. H. G. Wiedemann, Thermochim. Acta, 7 (1973) 131.

    Article  Google Scholar 

  4. E. M. Barrall II andL. B. Rogers, Anal. Chem., 34 (1962) 1106.

    Article  Google Scholar 

  5. P. Bayliss, Nature, 201 (1964) 1019; ibid. 207 (1965) 284.

    Google Scholar 

  6. H. G. Wiedemann, Vacuum Microbalance Techniques, Vol. 7 (ed. C. H. Massen and H. J. Van Beckum), Plenum Press, New York, 1970, p. 217.

    Google Scholar 

  7. E. Dubler, Ph. D. Thesis, Univ. of Zürich, Switzerland, 1970.

    Google Scholar 

  8. E. Dubler andH. R. Oswald, Helv. Chim. Acta, 54 (1971) 1628.

    Article  Google Scholar 

  9. H. Peters andH. H. Möbius, Z. Phys. Chem., 209 (1958) 298.

    Google Scholar 

  10. G.Mann, Dipl. Thesis, Univ. of Rostock, 1957.

  11. R. A. Kuntze, Can. J. Chem., 43 (1965) 2522.

    Google Scholar 

  12. A. Fowler, H. G. Howell andK. K. Schiller, J. Appl. Chem., 18 (1968) 366.

    Google Scholar 

  13. H. G. Wiedemann andG. Bayer, Z. Anal. Chem., 276 (1975) 21.

    Article  Google Scholar 

  14. J. R. Günter andH. R. Oswald, Bull. Inst. Chem. Res. Kyoto Univ., 53 (1975) 249.

    Google Scholar 

  15. G. Bayer andH. G. Wiedemann, Thermal Analysis, Proc. 4th Int. Conf. on Thermal Anal., Budapest 1974 (ed. I. Buzás), Akadémiai Kiadó, Budapest, Vol. 1, 1975, p. 763.

    Google Scholar 

  16. H. G. Wiedemann andG. Bayer, Chimia, 30 (1976) 351.

    Google Scholar 

  17. G. Bayer andH. G. Wiedemann, Proc. First Europ. Symp. on Thermal Anal., Univ. of Salford 1976 (ed. D. Dollimore), Heyden, London, 1976, p. 256.

    Google Scholar 

  18. F. Paulik andJ. Paulik, J. Thermal Anal., 5 (1973) 253; ibid. 8 (1975) 557.

    Google Scholar 

  19. J. Paulik andF. Paulik, J. Thermal Anal., 8 (1975) 567.

    Google Scholar 

  20. K. Motzfeldt, J. Phys. Chem., 59 (1955) 139.

    Article  Google Scholar 

  21. J. F. Cordes andS. Schreiner, Z. anorg. allg. Chem., 299 (1959) 87.

    Article  Google Scholar 

  22. H. G. Wiedemann, Thermochim. Acta, 3 (1972) 355.

    Article  Google Scholar 

  23. E. L. Simons, A. E. Newkirk andI. Aliferis, Anal. Chem., 29 (1957) 48.

    Article  Google Scholar 

  24. H. Peters andH. G. Wiedemann, Z. Anorg. Allg. Chem., 298 (1959) 202; ibid. 300 (1959) 142.

    Article  Google Scholar 

  25. H. G. Wiedemann, Z. Anorg. Allg. Chem., 306 (1960) 84.

    Article  Google Scholar 

  26. C.Duval, Microchim. Acta [Wien], (1958) 705.

  27. H. G. Wiedemann, Chemie Ing. Tech., 36 (1964) 1105.

    Article  Google Scholar 

  28. H. G. Wiedemann, Thermal Analysis, Proc. 2nd Int. Conf. on Thermal Anal., Worcester, Mass. 1968 (ed. R. F. Schwenker and P. D. Garn), Academic Press, New York, Vol. 1, 1969, p. 229.

    Google Scholar 

  29. H. G. Wiedemann andG. Bayer, Progress in Vacuum Microbalance Techniques, Vol. 3, Proc. 12th Conf. on Vac. Microbal. Techn., Lyon 1974 (ed. C. Eyraud and M.Escoubes), Heyden, London, 1975, p. 103.

    Google Scholar 

  30. H. G. Wiedemann, Thermal Analysis, Proc. 3rd Int. Conf. on Thermal Anal., Davos 1971 (ed. H. G. Wiedemann), Birkhäuser, Basel, Vol. 1, 1972, p. 171.

    Google Scholar 

  31. N. Gerard, Journ. of Physics E: Scientific Instruments, 7 (1974) 509.

    Article  Google Scholar 

  32. H. G.Wiedemann, Abstr. 4th Scandinav. Symp. on Thermal Anal., Arrhenius Lab., Univ. of Stockholm, Aug. 20–22, 1975, p. 18.

  33. H. G.Wiedemann, ACHEMA Frankfurt, June 24, 1970, ACHEMA-Jahrbuch 1968/1970, Vol. II.

  34. H. G. Wiedemann andA. Van Tets, Thermochim. Acta, 1 (1970) 159.

    Article  Google Scholar 

  35. A. Van Tets andH. G. Wiedemann, Thermal Analysis, Proc. 2nd Int. Conf. on Thermal Anal., Worcester, Mass. 1968 (ed. R. F. Schwenker and P. D. Garn), Academic Press, New York, Vol. 1, 1969, p. 121.

    Google Scholar 

  36. E.Dubler, B.Kamber and H. R.Oswald, preliminary results, to be published.

  37. I. S. Rassonskaja, Zh. Neorgan. Khim., 9 (1964) 2019.

    Google Scholar 

  38. J. Pfefferkorn andH. G. Wiedemann, Progress in Vacuum Microbalance Techniques, Vol. 2, Proc. 10th Conf. on Vac. Microbal. Techn., Uxbridge, Engl. 1972 (ed. S. C. Bevan, S. J. Gregg and N. D. Parkyns), Heyden, London, 1973, p. 221.

    Google Scholar 

  39. W. Forkel, Naturwissenschaften, 47 (1960) 10.

    Article  Google Scholar 

  40. A. E. Newkirk, Thermochim. Acta, 2 (1971) 1.

    Article  Google Scholar 

  41. H. G.McAdie, P. D.Garn and O.Menis: Selection of Differential Thermal Analysis Temperature Standards through a Cooperative Study, GM-758, 759, 760; U. S. Natl. Bur. Stand. Spec. Publ. 260-40, Washington, D. C., 1972.

  42. P. D.Garn and O.Menis: ICTA Certified Reference Materials for Differential Thermal Analysis from 180 K to 330 K, GM-757; U.S. Natl. Bur. Stand. Certificate, Washington, D. C., in press.

  43. P. D.Garn and O.Menis: ICTA Certified Reference Material Polystyrene for Glass Transition Measurements, GM-754; U.S. Natl. Bur. Stand. Certificate, Washington, D. C., in press.

  44. U.S. Natl. Bur. Stand. Certificate: Standard Reference Material 745, Gold Vapor Pressure; Washington, D. C., May 14, 1969.

  45. U.S. Natl. Bur. Stand. Certificate: Standard Reference Material 720, Synthetic Sapphire (Al2O3); Washington, D. C., August 26, 1970.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswald, H.R., Wiedemann, H.G. Fatcors influencing thermoanalytical curves. Journal of Thermal Analysis 12, 147–168 (1977). https://doi.org/10.1007/BF01909472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01909472

Keywords

Navigation