Skip to main content
Log in

Effects of POCA on metabolism and function in the ischemic rat heart

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (POCA) inhibits carnitine palmityltransferase I and fatty acid oxidation. The effects of POCA on cardiac function and on tissue levels of carnitine and coenzyme A esters were studied in the isolated rat heart subjected to 90 minutes of ischemia with and without 15 minutes of reperfusion. The perfusion medium contained 1.2 mM palmitate and 5.5 mM glucose plus or minus 0.5 mM POCA. This compound prevented accumulation of long-chain acylcarnitine and coenzyme A esters during ischemia and significantly improved the recovery of cardiac output after ischemia and reperfusion. Short-chain acylcarnitine levels were increased during ischemia by POCA. No effects were noted on tissue ATP and lactate levels. POCA may protect the ischemic heart by preventing accumulation of these toxic metabolites and by stimulating glucose utilization during ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieber LL, Farrell S (1983) Carnitine Acyltransferases. The Enzymes 26:627–644

    Google Scholar 

  2. Bielefeld DR, Vary TC, Neely JR (1985) Inhibition of carnitine palmityl-CoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol 17:619–625

    PubMed  Google Scholar 

  3. Chien KR, Sen A, Buja M, Willerson JT (1983) Fatty acylcarnitine accumulation and membrane injury in ischemic canine myocardium. Am J Cardiol 52:893–897

    PubMed  Google Scholar 

  4. Crass MF III, McCaskill ES, Shipp JC, Murthy UK (1971) Metabolism of endogenous lipids in heart muscle: effect of pressure development. Am J Physiol 220:428–435

    PubMed  Google Scholar 

  5. Eistetter K, Wolf HPO (1982) Synthesis and hypoglycemic activity of phenylalkyloxiranecarboxylic acid derivatives. J Med Chem 28:109–113

    Google Scholar 

  6. Feuvray D, Plouet J (1981) Relationship between structure and fatty acid metabolism in mitochondria isolated from ischemic rat hearts. Circ Res 48:740–747

    PubMed  Google Scholar 

  7. Hutter JF, Schweickhardt C, Piper HM, Spieckermann PG (1984) Inhibition of fatty acid oxidation and decrease of oxygen consumption of working heart by 4-bromocrotonic acid. J Mol Cell Cardiol 16:105–108

    PubMed  Google Scholar 

  8. Idell-Wenger JA, Grotyohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253:4310–4318

    PubMed  Google Scholar 

  9. Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16

    PubMed  Google Scholar 

  10. Liedtke AJ (1981) Alterations of carbohydrates and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23:321–336

    PubMed  Google Scholar 

  11. Liedtke AJ, Nellis SH, Mjs OD (1983) Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts. Am J Physiol 247:H387-H394

    Google Scholar 

  12. Moore KH, Radloff JF, Hull FE, Sweeley CC (1980) Incomplete fatty acid oxidation by ischemic heart: β-hydroxy fatty acid production. Am J Physiol 239:H257-H265

    PubMed  Google Scholar 

  13. Neely JR, Garber D, McDonough K, Idell-Wenger J (1979) Relationship between ventricular function and intermediates of fatty acid metabolism during myocardial ischema: Effects of carnitine. In: Winbury MM, Abiko Y (eds) Ischemic Myocardium and Antianginal Drugs. Raven Press, New York, pp 225–234

    Google Scholar 

  14. Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824

    PubMed  Google Scholar 

  15. Neely JR, McDonough KH (1984) Factors that influence myocardial levels of long chain acyl CoA and acyl carnitine. In: Ferrari R, Katz A, Shug AL, Visioli O (eds) Myocardial Ischemia and Lipid Metabolism. Plenum Publishing Corp, New York, pp 203–224

    Google Scholar 

  16. Parvin R, Pande SV (1977) Microdetermination of (−)carnitine and carnitine acetyltransferase activity. Anal Biochem 79:190–201

    PubMed  Google Scholar 

  17. Paulson DJ, Schmidt MJ, Shug AL (1984) Metabolic and physiological differences between zeroflow and low-flow myocardial ischemia: effects of L-acetylcarnitine. Basic Res Cardiol 79:551–561

    PubMed  Google Scholar 

  18. Paulson DJ, Schmidt MJ, Traxler JS, Ramacci MT, Shug AL (1984) Improvement of myocardial function in diabetic rats after treatment with L-carnitine metabolism 33:358–363

    Google Scholar 

  19. Piper MH, Sezer O, Schwartz P, Hutter JF, Schweickhardt C, Spieckermann PG (1984) Acylcarnitine effects on isolated cardiac mitochondria and erythrocytes. Basic Res Cardiol 79:186–198

    PubMed  Google Scholar 

  20. Prinzen FW, Ven der Vusse GJ, Arts T, Roemen THM, Coumans WA, Reneman RS (1984) Accumulation of nonesterfied fatty acids in ischemic canine myocardium. Am J Physiol 247:H264-H272

    PubMed  Google Scholar 

  21. Rosen P, Reinauer H (1984) Inhibition of carnitine palmitoyltransferase by phenylalkyloxiranecarboxylic acid and its influence on lipolysis and glucose metabolism in isolated perfused hearts of streptozotocin-diabetic rats. Metabolism 33:177–185

    PubMed  Google Scholar 

  22. Seitelberger R, Kraupp O, Beck A, Bacher S, Raberger G (1984) Effects of acylcarnitine transferase blocking agent sodium 2(5-(4-chlorophenyl)-pentyl)-oxirane-2-carboxylate (POCA) on cardiodynamics and myocardial metabolism in dogs. J Cardiovasc Pharmacol 6:902–908

    PubMed  Google Scholar 

  23. Seitelberger R, Kraupp O, Winkler M, Brugger G, Raberger O (1985) Effects of the acylcarnitine-transferase blocking agent sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate (POCA) on metabolism and regional function in the underperfused canine myocardium. J Cardiovasc Pharm 7:273–280

    Google Scholar 

  24. Sherratt HSA, Gately SJ, DeGrado TR, Ng CK, Holden JE (1983) Effects of 2[5-(Chlorophenyl)-pentyl] oxirane-2-carboxylate on fatty acid and glucose metabolism in perfused rat hearts determined using iodine-125 16-Iodohexadecanoate. Biochim Biophys Res Comm 117:653–657

    Google Scholar 

  25. Shug AL, Paulson DJ (1984) Fatty acid and carnitine-linked abnormalities during ischemia and cardiomyopathy. In: Ferrari R, Katz A, Shug AL, Visioli O (eds) Myocardial Ischemia and lipid Metabolism. Plenum Publishing Corp, New York, pp 203–224

    Google Scholar 

  26. Shug AL, Thomsen JH, Folts JD, Bittar N, Klein MI, Koke JR, Huth PJ (1978) Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 187:25–33

    PubMed  Google Scholar 

  27. Sobel BE, Coir PB, Robinson AK, Goldstein RA, Witkowski FX, Klein MS (1978) Accumulation of lipophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62:546–553

    PubMed  Google Scholar 

  28. Stanley PE, Williams SG (1969) Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Analyt Biochem 29:381–392

    PubMed  Google Scholar 

  29. Turnbull DM, Bartlett K, Younan SIM, Sherratt HSA (1984) The effects of 2 [5-(4-chlorophenyl)-pentyl]-oxirane-2-carbonyl-CoA on mitochondrial oxidations. Biochem Pharmacol 33:475–481

    PubMed  Google Scholar 

  30. Van der Vusse GJ, Rolman ThHM, Prinzen FW, Coumans WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50:538–546

    PubMed  Google Scholar 

  31. Veloso D, Veech RL (1974) Stoichiometric hydrolysis of long chain acyl CoA and measurement of CoA formed with an enzymatic cycling method. Anal Biochem 62:447–450

    Google Scholar 

  32. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253:4305–4309

    PubMed  Google Scholar 

  33. Wood JM, Bush B, Pitts BJR, Schwartz A (1977) Inhibition of bovine heart Na+, K+-ATPase by palmitylcarnitine and palmityl-CoA. Biochem Biophys Res Commun 74:677–684

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Sodium 2-[5-(4-chlorophenyl)-pentyl]-oxirane-2-carboxylate

This work was supported by the Veterans Administration and NIH HL 17736

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, D.J., Noonan, J.J., Ward, K.M. et al. Effects of POCA on metabolism and function in the ischemic rat heart. Basic Res Cardiol 81, 180–187 (1986). https://doi.org/10.1007/BF01907382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907382

Key words

Navigation