Skip to main content
Log in

The relationship between the perfusion deficit, infarct size and time after experimental coronary artery occlusion

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

It is well known that coronary occlusions of short duration do not produce infarcts in the dog heart, but permanent occlusions always do. The aim of this paper was to investigate with quantitative direct measurements the determinants of infarct size within these two extremes. We measured left ventricular\(M\dot V_2\), coronary and collateral blood flow and infarct size after occlusion times varying between 45 minutes and 24 hours.\(M\dot VO_2\) was kept low in one group by establishing low heart rates with a synthetic opiate. In another group,\(M\dot V_2\) was kept elevated by giving synthetic catecholamines (dobutamine) that stimulated contractility and heart rate. Under the described experimental conditions LV-coronary blood flow reflected the true demand for blood and oxygen. The ratio of collateral blood flow over coronary blood flow (both measured with tracer microspheres) was therefore a good approximation of the supply-demand ratio (SD). Since collateral flow was inhomogeneously distributed across the left ventricular wall, the SD-ratio showed similar variations. As the collateral blood flow increased with elapsed time after coronary occlusion, the SD-ratio improved. Since high LV-O2-demand increased coronary flow but exerted practically no influence on collateral flow, this situation influenced the SD-ratio in a negative way. Decreased O2-demand had the opposite effect. The SD-ratio is thus a valid expression of the relative and absolute blood flow deficit as influenced by the local and general O2-demand. We found significant and characteristic correlations between the SD-ratio and infarct which was only influenced by time. A blood flow deficit of 90% (i.e., collateral flow =10% of required flow) produced a 50%-infarct (relative to the risk-region) with a 45-min occlusion but a 90%-infarct with occlusion times of 3 hrs and longer. If the perfusion deficit is only 0.5 (collateral flow =50% of required flow), no infarct is detectable at occlusion times shorter than 3 hrs. Small perfusion deficits of only 20% below required flow caused infarctions at 24 hrs and longer.

In the group where the SD-ratio was closer to unity because of a low overall LV-O2-consumption (bradycardia), infarcts at t=24 hrs were significantly smaller than in the group with a high\(LV - M\dot VO_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaper, W., H. Frenzel, W. Hort, B. Winkler: Experimental coronary artery occlusion. II. Spatial and temporal evolution of infarcts in the dog heart. Basic Res. Cardiol.74, 233–239 (1979).

    PubMed  Google Scholar 

  2. Schaper, W., H. Frenzel, W. Hort: Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res. Cardiol.74, 46–53 (1979).

    PubMed  Google Scholar 

  3. Maroko, P. R., J. K. Kjekshus, B. E. Sobel, T. Watanabe, J. W. Covell, J. Ross, Jr., E. Braunwald: Factors influencing infarct size following experimental coronary occlusion. Circulation43, 67–82 (1971).

    PubMed  Google Scholar 

  4. Schaper, W.: Experimental coronary artery occlusion. III. The determinants of collateral blood flow in acute coronary occlusion. Basic Res. Cardiol.73, 584–594 (1978).

    PubMed  Google Scholar 

  5. Schaper, W., S. Pasyk: Influence of collateral flow on the ischemic tolerance of the heart following acute and subacute coronary occlusion. Circulation53, Suppl. I, 57–62 (1976).

    Google Scholar 

  6. Hoffmann, J. I. E.: Determinants and prediction of transmural myocardial perfusion. Circulation58, 381–391 (1978).

    PubMed  Google Scholar 

  7. Pasyk, S., W. Schaper: Myocardial flow and its distribution during acute myocardial infarction in the unanesthetized dog. Circulation50 (Suppl. III): 198 (1974).

    Google Scholar 

  8. Rivas, F., F. R. Cobb, R. J. Bache, K. Greenfield: Relationship between blood flow to ischemic regions and extent of myocardial infarction. Circulat. Res.38, 439–447 (1976).

    PubMed  Google Scholar 

  9. Bretschneider, H. J., L. A. Cott, I. Hensel, D. Kettler, J. Martel: Ein neuer komplexer hämodynamischer Parameter aus 5 additiven Gliedern zur Bestimmung des O2-Bedarfs des linken Ventrikels. Pflügers Arch. ges. Physiol.319, 14 (1970).

    Google Scholar 

  10. Kettler, D., I. Cott, J. Martel, H. J. Bretschneider: Combination of piritramide and N2O, a new anesthetic method for studies of cardiovascular function in dogs. Pflügers Arch. ges. Physiol.319, 42 (1970).

    Google Scholar 

  11. Gottwik, M., P. Zimmer, B. Wüsten, M. Hofmann, B. Winkler, W. Schaper: Experimental myocardial infarction in a closed-chest canine model. Observations of temporal and spatial evolution over 24 hours. Basic Res. Cardiol.76, 670–680 (1981).

    PubMed  Google Scholar 

  12. Nachlas, M. M., T. K. Shnitka: Macroscopic identification of early myocardial infarcts by alteration in dehydrogenase activity. Amer. J. Pathol.42, 379 (1963).

    Google Scholar 

  13. Schaper, J., J. Mulch, B. Winkler, W. Schaper: Ultrastructural, functional and biochemical criteria for estimation of reversibility of ischemic injury: a study on the effects of global ischemia on the isolated dog heart. J. Mol. Cell. Cardiol.11, 521–541 (1979).

    PubMed  Google Scholar 

  14. Domenech, R. J., J. I. E. Hoffman, M. I. M. Noble, K. B. Saunders, J. R. Henson, S. Subijanto: Total regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circulat. Res.25, 581–596 (1969).

    PubMed  Google Scholar 

  15. Braunwald, E., J. W. Covell, P. R. Maroko, J. Ross, Jr.: Effects of drugs and of counterpulsation on myocardial oxygen consumption. Circulation40 (Suppl. 4), 220–228 (1969).

    Google Scholar 

  16. Jennings, R. B., C. E. Ganote, K. Reimer: Ischemic tissue injury. Amer. J. Pathol.81, 179 (1975).

    Google Scholar 

  17. Reimer, K. A., R. B. Jennings: The “wave front phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest.40, 633–644 (1979).

    PubMed  Google Scholar 

  18. Jennings, R. B., K. A. Reimer: Lethal myocardial ischemic injury. Amer. J. Pathol.102, 241–255 (1981).

    Google Scholar 

  19. Williams, D. O., E. A. Amsterdam, R. R. Miller, D. T. Mason: Functional myocardial significance of coronary collateral vessels in patients with acute myocardial infarction: relation to pump performance, cardiogenic shock and survival. Amer. J. Candiol.37, 345 (1976).

    Google Scholar 

  20. Schaper, W.: The Collateral Circulation of the Heart. North Holland Publishing Company (Amsterdam 1971).

    Google Scholar 

  21. McGregor, M.: The coronary collateral circulation. A significant compensatory mechanism or a functionless quirk of nature? Circulation52, 529 (1975).

    PubMed  Google Scholar 

  22. Moraski, R. E., R. O. Russel, Jr., M. Smith, C. E. Rackley: Left ventricular function in patients with and without myocardial infarction and one, two or three vessel coronary artery disease. Amer. J. Cardiol.35, 1–10 (1975).

    PubMed  Google Scholar 

  23. Helfant, R. H., H. G. Kemp, R. Gorlin: Coronary atherosclerosis, coronary collaterals and their relation to cardiac function. Ann. Int. Med.73, 189–193 (1970).

    PubMed  Google Scholar 

  24. Gottwik, M.: Personal Communication.

  25. Forman, R., E. S. Kirk, J. M. Downey, E. H. Sonnenblick: Nitroglycerin and heterogeneity of myocardial blood flow. Reduced subendocardial blood flow and ventricular contractile force. J. Clin. Invest.52, 905–911 (1973).

    PubMed  Google Scholar 

  26. Hirzel, H. O., G. R. Nelson, E. H. Sonnenblick, E. S. Kirk: Redistribution of collateral flow from necrotic to surviving myocardium following coronary occlusion. Circulat. Res.39, 214–222 (1976).

    PubMed  Google Scholar 

  27. Griggs, Jr., D. M., Y. Nakamura: Effects of coronary constriction on myocardial distribution of iodoantipyrine-I131. Amer. J. Physiol.25, 1082–1088 (1968).

    Google Scholar 

  28. Buckberg, G. D., D. E. Fixler, J. P. Archie, J. I. E. Hoffman: Experimental subendocardial ischemia in dogs with normal coronary arteries. Circulat. Res.30, 67–81 (1972).

    PubMed  Google Scholar 

  29. Cox, Jr., J. R., R. Roberts, H. D. Arnbox, C. Oliver, B. E. Sobel: Relationship between enzymatically estimated myocardial infarct size and early ventricular dysrhythmia. Circulation53 (Suppl. 1) 1–55 (1976).

    Google Scholar 

  30. Kirk, E. S., H. O. Hirzel, E. H. Sonnenblick: The relative role of supply and demand in the effect of isoproterenol on infarct size. Circulation56, III, 571 (1977).

    PubMed  Google Scholar 

  31. Braunwald, E., P. R. Maroko: Limitation of infarct size. In: Current Problems in Cardiology, Vol. III, ed. W. P. Harvey, Year Book. Medical Publishers, pp. 1–51 (Chicago 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienaber, C., Gottwik, M., Winkler, B. et al. The relationship between the perfusion deficit, infarct size and time after experimental coronary artery occlusion. Basic Res Cardiol 78, 210–226 (1983). https://doi.org/10.1007/BF01906674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906674

Key words

Navigation