Skip to main content
Log in

Isolation and partial characterization of basic proteinases from stem bromelain

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Crude bromelain extracts from pineapple stems (Ananas comosus) were fractionated by two-step FPLC-cation-exchange chromatography. At least eight basic proteolytically active components were detected. The two main components F4 and F5 together with the most active proteinase fraction F9 were characterized by SDS-PAGE, mass spectroscopy, multizonal cathodal electrophoresis, partial amino acid sequence, and monosaccharide composition analysis. F9 amounts to about 2% of the total protein and has a 15 times higher specific activity against the substratel-pyroglutamyl-l-phenylanalyl-l-leucine-p-nitroanilide (PFLNA) than the main component F4. The molecular masses of F4, F5, and F9 were determined to 24,397, 24,472, and 23,427, respectively, by mass spectroscopy. Partial N-terminal amino acid sequence analysis (20 amino acids) revealed that F9 differs from the determined sequence of F4 and F5 by an exchange at position 10 (tyrosine→serine) and position 20 (asparagine→ glycine). F4 and F5 contained fucose, N-acetylglucosamine, xylose, and mannose in ratio of 1.0∶2.0∶1.0∶2.0, but only 50% of the proteins seem to be glycosylated, whereas F9 was found to be unglycosylated. Polyclonal antibodies (IgG) against F9 detected F4 and F5 with tenfold reduced reactivity. ThepH optimum of F4 and F5 was betweenpH4.0 and 4.5 and for F9 close to neutralpH. The kinetic parameters for PFLNA hydrolysis were similar for F4 (K m 2.30 mM,k cat 0.87 sec−1 and F5 (K m 2.42 mM,k cat 0.68 sec−1), and differed greatly from F9 (K m 0.40 mM,k cat 3.94 sec−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, A. J., and Kirschke, H. (1981). Cathepsin B, cathepsin H, and cathepsin L,Meth. Enzmol. 80, 535–561.

    Article  CAS  Google Scholar 

  • Batkin, S., Taussig, S. J., and Szekerezes, J. (1988). Antimetastatic effect of bromelain with or without its proteolytic and anticoagulant activity,J. Cancer Res. Clin. Oncol. 114, 507–508.

    Article  CAS  PubMed  Google Scholar 

  • Blakesley, R. W., and Boezi, J. A. (1977). A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250,Anal. Biochem. 82, 580–582.

    Article  CAS  PubMed  Google Scholar 

  • Dietzel, W., Kopperschläger, G., and Hofmann, E. (1972). An improved procedure for protein staining in polyacrylamide gels with a new type of Coomassie brilliant blue,Anal. Biochem. 48, 617–620.

    Article  Google Scholar 

  • Filippova, Y., Lysorgorskaya, E. N., Oksenoit, E. S., Rudenskaya, G. N., and Stepanov, V. M. (1984).l-Pyroglutamyl-l-phenylanalyl-l-leucine-p-nitroanilide—a chromogenic substrate for thiol proteinase assay,Anal. Biochem. 143, 293–297.

    Article  CAS  Google Scholar 

  • Garbin, F., Harrach, T., Eckert, K., and Maurer, H. R. (1994). Bromelain proteinase F9 augments lymphocyte-mediated growth inhibition of various tumor cellsin vitro, Int. J. Oncol. 5, 197–203.

    CAS  PubMed  Google Scholar 

  • Hale, L. P., and Haynes, B. F. (1992). Bromelain treatment of human T cells removes CD44, CD45RA, E2/MIC2, CD6, CD7, and Leu 8/LAM1 surfaces molecules and markedly enhances CD2-mediated T cell activation,J. Immunol. 149, 3809–3816.

    Article  CAS  PubMed  Google Scholar 

  • Harrach, T., Gebauer, F., Eckert, K., Kunze, R., and Maurer, H. R. (1994). Bromelain proteinase modulate the CD44 expression on human Molt 4/8 leukemia and SK-Mel 28 melanoma cells,Int. J. Oncol.,5, 485–488.

    CAS  PubMed  Google Scholar 

  • Hjerten, S. (1962). Chromatographic separation according to size of macromolecules and cell particles on columns of agarose suspensions,Arch. Biochem. Biophys. 99, 466–467.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, H., Takahashi, N., Oguri, S., and Tejima, S. (1979). Complete structure of the carbohydrate moiety of stem bromelain,J. Biol. Chem. 254, 10715–10719.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4,Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Maurer, H. R., Hozumi, M., Honma, Y., and Okabe-Kado, J. (1988). Bromelain induces the differentiation of leukemic cellsin vitro: An explanation for its cytostatic effects?Planta Medica 54, 377–381.

    Article  CAS  PubMed  Google Scholar 

  • Munzig, E., Eckert, K., Harrach, T., Graf, H., and Maurer, H. R. (1994). Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endotelial cells,FEBS Lett.,351, 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Ota, S., Muta, E., Katahira, Y., and Okamoto, Y. (1985). Reinvestigation of fractionation and some properties of the proteolytically active components of stem and fruit bromelains,J. Biochem. 98, 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Ritonja, A., Rowan, A. D., Buttle, D. J., Rawlings, D. J., Turk, V., and Barrett, A. J. (1989). Stem bromelain: Amino acid sequence and implications for weak binding of cystatin,FEBS Lett. 247, 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, A. D., Buttle, D. J., and Barrett, A. J. (1988). Ananain: A novel cysteine proteinase found in pineapple stem,Arch. Biochem. Biophys. 267, 262–270.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, A. D., Buttle, D. J., and Barrett, A. J. (1990). The cysteine proteinases of the pineapple plant,Biochem. J. 266, 869–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taussig, S. J., Batkin, S., and Szekerezes, J. (1985). Inhibition of tumour growthin vitro by bromelain, an extract of the pineapple plant (Ananas comosus),Planta Medica 6, 538–539.

    Article  Google Scholar 

  • Westermeier, R. (1990).Elektrophorese Praktikum, VCH, Weinheim, Germany.

    Google Scholar 

  • Yasuda, Y., Takahashi, N., and Murachi, T. (1970). The composition and structure of carbohydrate moiety of stem bromelain,Biochemistry 9, 25–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to H. Tschesche, Bielefeld, Germany, on behalf of his 60th anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrach, T., Eckert, K., Schulze-Forster, K. et al. Isolation and partial characterization of basic proteinases from stem bromelain. J Protein Chem 14, 41–52 (1995). https://doi.org/10.1007/BF01902843

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01902843

Key words

Navigation