Skip to main content
Log in

In planta 2,3,5 truodobenzoic acid treatment promotes high frequency and routine in vitro regeneration of sugarbeet (Beta vulgaris L.) plants

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

The effect ofin planta treatments with auxin inhibitors such as 2,3,5 triiodobenzoic acid (TIBA) on regeneration of plantsin vitro is not known. Here, we show the beneficial effect of preconditioning sugarbeet plants in the greenhouse with TIBA (3 mg/1) for efficientin vitro plant regeneration via a callus phase from cultured leaf explants. Without this treatment, no shoot developed on the control leaf-calluses. Several hundred plants were routinely regenerated using this protocol. More importantly, the number of shoots per explantcallus increased drastically over the subsequent subculture period. The most favorable media for callus induction contained a combination of an auxin and a cytokinin (0.1 mg/1 2,4-dichlorophenoxyacetic acid and 1 mg/1 N-6 benzylaminopurine) or a cytokinin alone (2.2 mg/1 thidiazuron). However, only the callus derived from leaves of TIBA-treated genotypes and induced on thidiazuron-medium produced numerous shoots. Histological studies showed the formation of meristematic zones only in the organogenic callus developed on thidiazuron-coutaining medium. The analysis of peroxidase activity showed that the activity was higher for the TIBA-treated plants than for the untreated control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

N-6 benzylaminopurine

2,4-D:

2,4-dicliloropbenoxyacetic acid

IAA:

indoleacetic acid

IBA:

indole-3-butyric acid

MOPS:

N-morpbolino-3 propanesulfonic acid

NAA:

1-naphtbaleneacetic acid

OD:

optical density

TIBA:

2,3,5-triiodobenzoic acid

TDZ:

thidiazuron

References

  • Bradford MM (1976) Biochem 72: 248–254

    PubMed  Google Scholar 

  • Bretagne B, Chupeau M-C, Chupeau Y, Fouilloux G (1994) Plant Cell Reports 14: 120–124

    Article  Google Scholar 

  • Capelle SC, Mok DWS, Kirchner SC, Mok Me (1983) Plant Physiol 73: 796–802

    Google Scholar 

  • Catlin DW (1990) Plant Cell Reports 9: 285–288

    Article  Google Scholar 

  • De Greef W, Jacobs M (1979) Plant Science Letters 17: 55–61

    Article  Google Scholar 

  • Depta H, Rubery PH (1984) J Plant Physiol 115: 371–387

    Google Scholar 

  • Detrez C, Tétu T, Sangwan RS, Sangwan-Norreel BS (1988) J Exp Bot 39:917–926

    Google Scholar 

  • Doley WP, Saunders JW (1989) Plant Cell Reports 8: 222–225

    Article  Google Scholar 

  • Gaspar T, Penel C, Hagege D, Greppin H (1991) In: J Lobarzewski, H Greppin, C Penel and T Gaspar (eds) Biochenucal, Molecular and Physiological Aspects of Plant Peroxidases, pp 249–280

  • George MW, Tripepi RR (1994) Plant Cell Tissue Organ Cult 39: 27–36

    Article  Google Scholar 

  • Hooker MP, Nabors MW (1977) Z Pflanzenphysiol 84: 237–246

    Google Scholar 

  • Jacq B, Tétu T, Sangwan RS, De Laat A, Sangwan-Norreel BS (1992) Plant Cell Reports 11: 329–333

    Article  Google Scholar 

  • Jacq B, Tétu T, Sangwan RS, De Laat A, Sangwan-Norreel BS (1993) Plant Breeding 110: 185–191

    Google Scholar 

  • Kaminek M, Armstrong DJ (1990) Plant Physiol 93: 1530–1538

    Google Scholar 

  • Kevers CL, Coumans M, De Greef W, Jacobs M, Gaspar T (1981) Z Pflanzenphysiol 101: 79–87

    Google Scholar 

  • Krens FA, Jamar D (1989) J Plant Physiol 134: 651–655

    Google Scholar 

  • Malik K A, Saxena PK (1992) Planta 186: 384–389

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15: 473–497

    Google Scholar 

  • Nielsen JM, Hansen J, Brandt K (1995) Plant Cell Tissue Organ Cult 41: 165–170

    Article  Google Scholar 

  • Owens LD, Eberts DR (1992) Plant Cell Tissue Organ Cult 31: 195–201

    Google Scholar 

  • Özcan S, Barghchi M, Firek S, Draper J (1993) Plant Cell Tissue Organ Cult 34: 271–277

    Article  Google Scholar 

  • Ricthie GA, Short KC, Davey MR (1989) J Exp Bot 40: 277–283

    Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Planta 118: 101–121

    Article  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel BS (1992) Planta 188: 439–456

    Article  Google Scholar 

  • Saunders JW, Shin K (1986) Crop Sci 26: 1240–1244

    Google Scholar 

  • Saunders JW, Doley WP (1986) J Plant Physiol 124: 473–479

    Google Scholar 

  • Tétu T, Sangwan RS, Sangwan-Norreel (1987) J Exp Bot 38: 506–517

    Google Scholar 

  • Van Geyt JPC, Jacobs M (1985) Plant Cell Reports 4: 66–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roussy, I., Dubois, F., Sangwan, R.S. et al. In planta 2,3,5 truodobenzoic acid treatment promotes high frequency and routine in vitro regeneration of sugarbeet (Beta vulgaris L.) plants. Plant Cell Reports 16, 142–146 (1996). https://doi.org/10.1007/BF01890855

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01890855

Keywords

Navigation