Skip to main content
Log in

Gill morphometry of the facultative air-breathing loricariid fish,Hypostomus plecostomus (Walbaum) with, special emphasis on aquatic respiration

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Gill respiratory surface area and oxygen consumption during aquatic respiration were measured in the facultative air-breathing loricariid fish,Hypostomus plecostomus. The fish did not surface to breathe atmospheric air in normoxic water; air-breathing was evoked by environmental hypoxia (water oxygen tension=35±2, mmHg) and did not show size-related threshold differences for air breathing.

During gradual hypoxia, without access to atmospheric, air,H. plecostomus was found to be an oxyregulator and showed a reduced range of water oxygen tension in which the oxygen consumption remained constant in smaller fish. The critical oxygen tensions were 55 and 33 mmHg at 25°C for fish of 14–30 g and 31–80g body weight, respectively.

The gill respiratory surface area (total lamellae area) is reduced, however, the lamellar frequency per mm of gill filament is high which facilitates the gas exchange. Moreover, the increase of gill respiratory surface area (b=0.666) is higher than the increase in routine VO2 (b=0.338) showing a positive relationship between the gill respiratory surface area /VO2 ratio and body mass (b=0.328); this indicates that the fish have greater gill respiratory surface area per unit of routine VO2 as they grow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Brett, J.R. and Groves, T.D.D. 1979. Physiological energetics.In Fish Physiology. Vol. VIII, pp. 279–352. Edited by W.S. Hoar, D.J. Randall and J.R. Brett Academic Press, New York

    Google Scholar 

  • Carter, G.S. 1957. Air breathing.In The Physiology of Fish. Vol. I, pp. 65–79. Edited by M.E. Brown. Academic Press, New York.

    Google Scholar 

  • Fernandes, M.N. and Rantin, F.T. 1986. Gill morphometry of cichlid fish,Oreochromis (Sarotherodon) niloticus (Pisces, Teleostei). Ciência e Cultura 38: 192–198.

    Google Scholar 

  • Fernandes, M.N. and Rantin, F.T. 1989. Respiratory responses ofOreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. J. Fish Biol. 35: 509–519.

    Google Scholar 

  • Fernandes, M.N. and Rantin, F.T. 1994. Relationships between oxygen availability and metabolic cost of breathing in Nile tilapia (Oreochromis niloticus): aquacultural consequences. Aquaculture 127: 339–346.

    Google Scholar 

  • Fernandes, M.N., Barrionuevo, W.R. and Rantin, F.T. 1995a. Effects of thermal stress on the respiratory responses to hypoxia of a South American Prochilodontid fish,Prochilodus scrofa. J. Fish Biol. 46: 123–133.

    Google Scholar 

  • Fernandes, M.N., Perna, S.A., Santos, C.T.C. and Severi, W. 1995b. The gill filament muscles in two Loricariid fish (genusHypostomus andRhinelepis). J. Fish Biol. 46: 1082–1085.

    Google Scholar 

  • Fernandes, M.N., Rantin, F.T., Kalinin, A.L. and Moron, S.E. 1994. Comparative study of gill dimensions of three erythrinid species in relation to their respiratory function. Can. J. Zool. 72: 160–165.

    Google Scholar 

  • Gee, J.H. 1976. Buoyancy and aerial respiration: factors influencing the evolution of reduced swim-bladder volume of some Central American catfishes (Trichomycteridae, Callichthyidae, Loricariidae, Astroblepidae). Can. J. Zool. 54: 1030–1037.

    Google Scholar 

  • Graham, J.B. 1976. Respiratory adaptations of marine air-breathing fishes.In Respiration of Amphibious Vertebrates. pp. 165–187. Edited by G.M. Hughes. Academic Press, London.

    Google Scholar 

  • Graham, J.B. and Baird, T.A. 1982. The transition to air-breathing in fishes. I. Environmental effects on the facultative air-breathing ofAncistrus chagresi andHypostomus plecostomus (Lorocariidae). J. Exp. Biol. 96: 53–67.

    Google Scholar 

  • Graham, J.B. and Baird, T.A. 1984. The transition to air-breathing in fishes. III. Effects of body size and aquatic hypoxia in the aerial gas exchange of the swamp eelSynbranchus marmoratus. J. Exp. Biol. 108: 357–375.

    Google Scholar 

  • Graham, J.B., Baird, T.A. and Stöckmann, W. 1987. The transition to air-breathing in fishes. IV. Impact of branchial specializations for air breathing on the aquatic respiration mechanisms and ventilatory costs of the swamp eelSynbranchus marmoratus. J. Exp. Biol. 129: 83–106.

    Google Scholar 

  • Graham, J.B., Kramer, D.L. and Pineda, E. 1978. Comparative respiration of an air breathing and a non-air breathing characoid fish and the evolution of aerial respiration in characins. Physiol. Zool. 51: 279–288.

    Google Scholar 

  • Gray, I.E. 1954. Comparative study of the gill area of marine fishes. Biol. Bull. 107: 219–225.

    Google Scholar 

  • Hakim, A., Munshi, J.S.T. and Hughes, G.M. 1978. Morphometrics of the respiratory organs of the Indian green snakeheaded fish,Channa punctata. J. Zool. Lond. 184 519–543.

    Google Scholar 

  • Hughes, G.M. 1966. The dimensions of fish gills in relation to their function. J. Exp. Biol. 45: 177–195.

    Google Scholar 

  • Hughes, G.M. 1980. Morphometry of fish gas exchange organs in relation to their respiratory function.In Environmental Physiology of Fishes. pp. 33–56. Edited by M.A. Ali. Plenum Press, New York.

    Google Scholar 

  • Hughes, G.M. 1972. Morphometrics of fish gills. Resp. Physiol. 14: 1–25.

    Google Scholar 

  • Hughes, G.M. 1984a. Measurement of gill area in fishes: Practices and Problems. J. Mar. Biol. Assoc. U.K. 64: 637–655.

    Google Scholar 

  • Hughes, G.M. 1984b. Scaling of respiratory areas in relation to oxygen consumption of vertebrates. Experientia 40: 519–524.

    Google Scholar 

  • Hughes, G.M. and Al-Kadhomiy, N.K. 1986. Gill morphometry of the mudskipper,Boleophthalmus boddarti. J. Mar. Biol. Assoc. U.K. 66: 671–682.

    Google Scholar 

  • Hughes, G.M. and Al-Kadhomiy, N.K. 1988. Changes in scaling of respiration systems during the development of fishes. J. Mar. Biol. Ass. U.K. 68: 489–498.

    Google Scholar 

  • Hughes, G.M., Dube, S.C. and Munshi, J.S.D. 1973. Surface area of the respiratory organs of the climbing perch,Anabas testudineus (Pisces: Anabantidae). J. Zool., Lond. 170: 227–243.

    Google Scholar 

  • Hughes, G.M., Singh, B.R., Guha, G., Dube, S.C. and Munshi, J.S.D. 1974. Respiratory surface area of an air-breathing siluroid fish,Saccobranchus (=Heteropneustes) fossilis in relation to body size. J. Zool., Lond. 172: 215–232.

    Google Scholar 

  • Johansen, K. 1970. Air breathing in fishes.In Fish Physiology. Vol. IV, pp. 361–411. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.

    Google Scholar 

  • Johansen, K. and Lenfant, C. 1967. Respiratory function in the South American lungfish,Lepidosiren paradoxa (Fitz). J. Exp. Biol. 46: 205–218.

    Google Scholar 

  • Kalinin, A.L., Rantin, F.T. and Glass, M.L. 1993. Dependence or body size of respiratory function inHoplias malabaricus (Teleostei, Erythrinidae) during graded hypoxia. Fish Physiol. Biochem. 12: 47–51.

    Google Scholar 

  • Munshi, J.S.D. 1976. Gross and fine structure of the respiratory organs of air-breathing fishes.In Respiration of Amphibious Vertebrate. pp. 73–104. Edited by G.M. Hughes. Academic Press, London.

    Google Scholar 

  • Munshi, J.S.D., Pandey, B.N., Pandey, P.K. and Ojha, J. 1978. Oxygen uptake through gills and skin in relation to body weight of an air-breathing siluroid fish,Saccobranchus (=Heteropneustes) fossilis. J. Zool., Lond. 184: 171–180.

    Google Scholar 

  • Muir, B.S. and Hughes, G.M. 1969. Gill dimensions for the three species of tunny. J. Exp. Biol. 51: 271–285.

    Google Scholar 

  • Niimi, A.J. and Morgan, S.L. 1980. Morphometric examinations of the gills of walleye,Stizostedion vitreum vitreum (Mitchill) and rainbow trout,Salmo gairdneri Richardson. J. Fish Biol. 16: 685–692.

    Google Scholar 

  • Niva, B., Ojha, J. and Munshi, J.S.D. 1981. Morphometrics of the respiratory organs of an estuarine goby,Boleophthalmus boddaerti. Jap. J. Ichthyol. 27: 316–326.

    Google Scholar 

  • Oikawa, S. and Itazawa, Y. 1985. Gill and body surface areas of the carp in relation to body mass, with special reference to the metabolism-size relationship. J. Exp. Biol. 117: 1–14.

    Google Scholar 

  • Perna, S.A. 1991. Estudo morfo-funcional das brânquias e do aparelho ventilatório de cascudo,Hypostomus plecostomus (Teleostei, Loricariidae). Aspectos adaptativos e ecológicos. M.Sc. Thesis, Federal University of São Carlos, Brazil.

    Google Scholar 

  • Santos, C.T.C. 1994. Estudo morfométrico e estrutural das brânquias de cascudo preto,Rhinelepis strigosa (Teleostel, Loricariidae). M.Sc. Thesis, Federal University of São Carlos, Brazil.

    Google Scholar 

  • Santos, C.T.C., Fernandes, M.N. and Severi, W. 1994. Respiratory gill surface area of a facultative air-breathing loricariid fish,Rhinelepis strigosa. Can. J. Zool. 72: 2009–2013.

    Google Scholar 

  • Schmidt-Nielsen, K. 1970. Energy metabolism, body size, and problems of scaling. Fed. Proc. Fed. Am. Socs. Exp. Biol. 29: 1524–1532.

    Google Scholar 

  • Singh, B.N. 1976. Balance between aquatic and aerial respiration.In Respiration of Amphibious Vertebrates. pp. 125–164. Edited by G.M. Hughes. Academic Press, London.

    Google Scholar 

  • Takasusuki, J. 1994. Respostas respiratórias de cascudo preto,Rhinelepis strigosa (Agassiz 1829) (Teleostei, Loricariidae), a hypoxia ambiental. M.Sc. Thesis, Federal University of São Carlos, Brazil.

    Google Scholar 

  • Winberg, G.G. 1956. New Information on Metabolic Rate in Fishes. Fisheries Research Board of Canada, Translation series, 362. Ottawa.

  • Yeager, D.P. and Ultsch, G.R. 1989. Physiological regulation and conformations: a BASIC program for the determination of critical points. Physiol. Zool. 62: 888–907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparecida Perna, S., Fernandes, M.N. Gill morphometry of the facultative air-breathing loricariid fish,Hypostomus plecostomus (Walbaum) with, special emphasis on aquatic respiration. Fish Physiol Biochem 15, 213–220 (1996). https://doi.org/10.1007/BF01875572

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875572

Keywords

Navigation