Skip to main content
Log in

In Vitro excitation of purified membrane fragments by cholinergic agonists

II. The permeability change caused by cholinergic agonists

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effect of carbamylcholine (Carb) on the release of22Na+ by excitable microsacs is reversible: Carb does not promote an irreversible lysis of the microsacs. The microsacs form closed vesicles which are more permeable to water than to solutes present in physiological media; their apparent volume is controlled by the osmotic pressure of the medium in which they are equilibrated; they behave like micro-osmometers. In the presence of Carb, the apparent volume of the microsacs does not change: Carb has no significant effect on water permeability.

The time course of22Na+ release does not follow a simple exponential law and is fitted by a minimum of three exponentials. The complex kinetics are not due to electrical effects but presumably are caused by an heterogeneity both in size and in nature of the microsacs population.

Microsacs at rest are permeable to45Ca+,42K+ and22Na+, and to36Cl but slightly or not at all to32S−SO 4−2 . In the presence of Carb, the permeability to22Na+,42K+ and45Ca++ increases, whereas the permeability to14C-tetraethylammonium and14C-choline does not change. Carb has no effect on the permeability to negatively charged or uncharged permeants.

The kinetics of22Na+ efflux is independent of the total concentration of Na+ either inside or outside the microsacs. The outward transport of Na+ thus varies only with the concentration of ion facing theinside of the membrane. Efflux of42K+ follows the same laws as the efflux of22Na+ except that it is blocked by+Na ions present in the outside medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238.

    PubMed  Google Scholar 

  • Benda, P., Tsuji, S., Daussent, J., Changeux, J.-P. 1969. Localization of acetylcholinesterase by immunofluorescence in eel electroplax.Nature 225:1149.

    Google Scholar 

  • Bergman, C. 1970. Increase of sodium concentration near the inner surface of the nodal membrane.Pflüg. Arch. Ges. Physiol. 317:287.

    Article  Google Scholar 

  • Bloom, F. E., Barrnett, R. J. 1966. Fine structural localization of acetylcholinesterase in electroplaque of the electric eel.J. Cell Biol. 29:475.

    Article  PubMed  Google Scholar 

  • Blumenthal, R., Changeux, J.-P. 1970. About the changes of internal ionic concentration in the isolated electroplax during chemical excitation.Biochem. Biophys. Acta 219:398.

    PubMed  Google Scholar 

  • Changeux, J.-P., Podleski, T.R., Kasai, M., Blumenthal, R. 1970. Some molecular aspects of membrane excitation studied with the eel electroplax.In: Excitatory Synaptic Mechanisms. P. Andersen, J. K. S. Jansen, editors. p. 123. Universitetsforlaget, Oslo.

    Google Scholar 

  • ——, Meunier, J. C. 1969. On some structural analogies between acetylcholinesterase and the macromolecular receptor of acetylcholine.J. Gen. Physiol. 54:225 S.

    Article  Google Scholar 

  • Del Castillo, J., Katz, B. 1954. The membrane change produced by the neuromuscular transmitter.J. Physiol. 125:546.

    PubMed  Google Scholar 

  • —— 1956. Biophysical aspects of neuromuscular transmission.Progr. Biophys. 6:21.

    Google Scholar 

  • Dodge, F. A., Frankenhaeuser, B.. 1959. Sodium currents in the myelinated nerve fibre ofXenopus laevis investigated with the voltage clamp technique.J. Physiol. 148:188.

    PubMed  Google Scholar 

  • Eigen, M. 1968. Kinetics of reaction control and information transfer in enzymes and nucleic acids.In: Nobel Symposium no. V., Fast Reactions and Primary Processes in Chemical Kinetics. S. Claesson, editor. p. 333. Interscience, New York.

    Google Scholar 

  • Grundfest, H. 1966a. Comparative electrobiology of excitable membranes.In: Advances in Comparative Physiology, I. O. E. Lowenstein, editor. Academic Press, New York.

    Google Scholar 

  • — 1966b. Heterogeneity of excitable membrane: electrophysiological and pharmacological evidence and some consequence.Annals of the New York Academy of Sciences 137:901.

    PubMed  Google Scholar 

  • Higman, H., Podleski, T., Bartels, E. 1963. Apparent dissociation constants between carbamylcholine,d-tubocurarine and the receptor.Biochim. Biophys. Acta 75:187.

    Article  PubMed  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500.

    PubMed  Google Scholar 

  • Johnson, S. M., Bangham, A. D. 1969. Potassium permeability of single compartment liposomes with and without valinomycin.Biochim. Biophys. Acta 193:82.

    PubMed  Google Scholar 

  • Kaback, H. R. 1970. Transport.Ann. Rev. Biochem. 39:561.

    Article  PubMed  Google Scholar 

  • — 1971. The transport of sugars across isolated bacterial membranes.In: Current Topics in Membranes and Transport. A. Kleinzeller and F. Bronner, editors. Academic Press, New York (in press).

    Google Scholar 

  • Le Bret, M. 1970. Etude de la liaison du manganèse sur une membrane excitable par resonance magnétique.Thèse Doctorat 3ème cycle, Faculté des Sciences, Paris.

    Google Scholar 

  • Lehninger, A. L. 1964. The Mitochondrion. W. A. Benjamin Inc., New York, Amsterdam.

    Google Scholar 

  • Nachmansohn, D. 1959. Chemical and Molecular Basis of Nerve Activity. Academic Press, New York.

    Google Scholar 

  • Nakamura, Y., Nakajima, S., Grundfest, H. 1965. Analysis of spike electrogenesis and depolarizingK inactivation in electroplaques ofElectrophorus electricus, L.J. Gen. Physiol. 49:321.

    Article  Google Scholar 

  • Nastuk, W. L. 1959. Some ionic factors that influence the action of acetylcholine at the muscle end-plate membrane.Ann. N. Y. Acad. Sci. 81:317.

    PubMed  Google Scholar 

  • Passow, H. 1969. Ion permeability of erythrocyte ghosts.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli, editors. p. 21. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Porzig, H. 1970. Calcium efflux from human erythrocyte ghosts.J. Memb. Biol. 2:324.

    Article  Google Scholar 

  • Ruiz-Manresa, F. 1970. Electrogenesis of eel electroplaques. Conductance components and impedance changes during activity. Ph. D. Thesis, Columbia University, New York.

    Google Scholar 

  • Saha, J., Papahadjopoulos, D., Wenner, C. E. 1970. Studies on model membranes. I. Effects of Ca2+ and antibiotics on permeability of cardiolipid liquid-crystalline vesicles.Biochim. Biophys. Acta 196:10.

    PubMed  Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1960. On the permeability of end-plate membrane during the action of transmitter.J. Physiol. 154:52.

    Google Scholar 

  • Takeuchi, N. 1963. Effects of calcium on the conductance change of the end-plate membrane during the action of tranmitter.J. Physiol. 167:141.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasai, M., Changeux, JP. In Vitro excitation of purified membrane fragments by cholinergic agonists. J. Membrain Biol. 6, 24–57 (1971). https://doi.org/10.1007/BF01874113

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01874113

Keywords

Navigation