Skip to main content
Log in

Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10 % of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

CM:

Cytoplasmic membrane

FCCP:

Carbonyl-p-trifluoromethoxyphenylhydrazone

ICM:

Intracytoplasmic membrane

Rba :

Rhodobacter

RC:

Reaction center

References

  • Althoff G, Schönknecht G, Junge W (1991) Gramicidin in chromatophores of Rhodobacter sphaeroides. Eur Biophys J 19:213–216

    Article  CAS  Google Scholar 

  • Baccarini-Melandri A, Melandri BA (1971) Partial resolution of the photophosphorylation system of Rhodopseudomonas capsulata. Methods Enzymol 123:556–561

    Article  Google Scholar 

  • Béal D, Rappaport F, Joliot P (1999) A new high-sensitivity 10-ns time–resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatus. Rev Sci Instrum 70:202–207

    Article  Google Scholar 

  • Cartron ML, Olsen JD, Sener M, Jackson PJ et al (2014) Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochim Biophys Acta 1837:1769–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen-Bazire G, Kunisawa R (1962) The fine structure of Rhodospirillum rubrum. J Cell Biol 16:401–416

    Article  Google Scholar 

  • Cotton NPJ, Clark AJ, Jackson JB (1983) Interaction between the respiratory and photosynthetic electron transport chains of intact cells of Rhodopseudomonas capsulata mediated by membrane potential. Eur J Biochem 130:581–587

    Article  CAS  PubMed  Google Scholar 

  • de Rivoyre M, Ginet N, Bouyer P, Lavergne J (2010) Excitation transfer connectivity in different purple bacteria: a theoretical and experimental study. Biochim Biophys Acta 1797:1780–1794

    Article  PubMed  Google Scholar 

  • Feniouk BA, Cherepanov DA, Voskoboynikova NE, Mulkidjanian AY, Junge W (2002) Chromatophore vesicles of Rhodobacter capsulatus contain on average one F0F1-ATP synthase each. Biophys J 82:1115–1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frenkel A (1954) Light-induced phosphorylation by cell-free preparations of photosynthetic bacteria. JACS 76:5568–5569

    Article  CAS  Google Scholar 

  • Gubellini F, Francia F, Turina P, Lévy D, Venturoli G, Melandri BA (2007) Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution. Biochim Biophys Acta 1767:1340–1352

    Article  CAS  PubMed  Google Scholar 

  • Holt SC, Marr AG (1965) Location of chlorophyll in Rhodospirillum rubrum. J Bacteriol 89:1402–1412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) (2009) The purple photosynthetic bacteria. advances in photosynthesis and respiration, vol 28. Springer, Dordrecht

    Google Scholar 

  • Jackson JB, Crofts AR (1971) The kinetics of light induced carotenoid changes in Rhodopseudornonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur J Biochem 18:120–130

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Béal D, Frilley B (1980) Une nouvelle méthode spectrophotométrique destinée à l’étude des réactions photosynthétiques. J Chim Phys 77:209–216

    CAS  Google Scholar 

  • Mascle-Allemand C, Lavergne J, Bernadac A, Sturgis JN (2008) Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus. Biochim Biophys Acta 1777:1552–1559

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Nishimura M (1977) Sidedness of membrane structures in Rhodopseudomonas sphaeroides: electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores. Biochim Biophys Acta 459:483–491

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K, Shimada (1993) Electrochromic spectral ban shift of carotenoids in the photosynthetic membranes of Rhodospirillum molischianum and Rhodospirillum photometricum. Biochim Biophys Acta 1140:293–296

    Article  CAS  Google Scholar 

  • Matsuura K, Masamoto K, Itoh S, Nishimura M (1979) Effect of surface potential on the intramembrane electrical field measured with carotenoid spectral shift in chromatophores from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 547:91–102

    Article  CAS  PubMed  Google Scholar 

  • McEwan AG, George CL, Ferguson SJ, Jackson JB (1982) A nitrate reductase activity in Rhodopseudomonas capsulata linked to electron transfer and generation of membrane potential. FEBS Lett 150:277–280

    Article  CAS  Google Scholar 

  • McEwan AG, Cotton NPI, Ferguson SJ, Jackson JB (1984) The inhibition of nitrate reduction by light in Rhodopseudomonas capsulata is mediated by the membrane potential, but inhibition by oxygen is not. In: Sybesma C (ed) Advances in photosynthesis research, vol 2. Jünk, Nijhoff, Dordrecht, pp 449–452

    Chapter  Google Scholar 

  • Nakamura H (1937) Über die Photosynthese bei der schwefelfreiren Purpurbakterie, Rhodobacillus palustris. Beitrage zur Stoffwechselphysiologie der Purpurbakterien. Acta Phytochim 9:189–234

    CAS  Google Scholar 

  • Niederman RA (2010) Eukaryotic behaviour of a prokaryotic energy-transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane. Mol Microbiol 76:803–805

    Article  CAS  PubMed  Google Scholar 

  • Pardee AB, Schachman HK, Stanier RY (1952) Chromatophores of Rhodospirillum rubrum. Nature 169:282–283

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Baccarini-Melandri A, Hauska GA, Melandri BA, Crofts AR (1975) Asymmetry of an energy transducing membrane: the location of cytochrome c 2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Biochim Biophys Acta 387:212–227

    Article  CAS  PubMed  Google Scholar 

  • Remsen CC (1978) Comparative subcellular architecture of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria, chapter 3. Plenum Press, New York, pp 31–59

    Google Scholar 

  • Richaud P, Marrs BL, Verméglio A (1986) Two modes of interaction between photosynthetic and respiratory electron chains in whole cells of Rhodopseudornonas capsulata. Biochim Biophys Acta 850:256–263

    Article  CAS  Google Scholar 

  • Rugolo M, Zannoni D (1983) Oxygen-induced inhibition and light-dependent uptake of tetraphenylphosphonium ions as a probe of a direct interaction between photosynthetic and respiratory components in cells of Rhodopseudomonas capsulata. Biochem Biophys Res Commun 113:155–162

    Article  CAS  PubMed  Google Scholar 

  • Sabaty M, Pierre Gans P, Verméglio A (1993) Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans. Arch Microbiol 159:153–159

    Article  CAS  Google Scholar 

  • Satoh T (1977) Light-activated, -inhibited and -independent denitrification by a denitrifying phototrophic bacterium. Arch Microbiol 115:293–298

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Nevo R, Li L-N, Mangenot S, Dana Charuvi D, Boudier T, Prima V, Hubert P, Sturgis JN, Reich Z (2014) The architecture of Rhodobacter sphaeroides chromatophores. Biochim Biophys Acta 1837:1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Tucker JD, Siebert CA, Escalante M, Adams PG et al (2010) Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Mol Microbiol 76:833–847

    Article  CAS  PubMed  Google Scholar 

  • van Niel CB (1941) The bacterial photosynthesis and their importance for the general problem of photosynthesis. Adv Enzymol 1:263–318

    Google Scholar 

  • Vatter AE, Wolfe RS (1958) The structure of photosynthetic bacteria. J Bacteriol 75:480–488

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

FR acknowledges financial support from the CNRS and the “Initiative d’Excellence” program from the French state (Grant “DYNAMO”, ANR-11-LABX-0011-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Verméglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verméglio, A., Lavergne, J. & Rappaport, F. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach. Photosynth Res 127, 13–24 (2016). https://doi.org/10.1007/s11120-014-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0068-7

Keywords

Navigation