Skip to main content
Log in

Anion permeation in the proximal tubule ofNecturus kidney: The shunt pathway

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effect of foreign anions on transepithelial potential difference and transepithelial input conductance was studied in the isolated perfusedNecturus kidney. Two microelectrodes (recording and current-injecting) were inserted into the lumen of single proximal tubules and the peritubular perfusate was shifted reversibly for 30–60 sec from a physiologic Ringer's solution to a test solution in which chloride was replaced isosmotically by a foreign anion. The permeability sequence, obtained by potential measurements, was: lactate < glutamate < gluconate < pyruvate < benzene sulfonate ≦ acetate ≦ F < propionate <BrO3<formate<ClO3<Cl<ClO4<I≦Br<NO3<SCN. Transepithelial conductance decreased when the tissue was perfused with anions less permeable than chloride but the conductance sequence was different from the permeability sequence. Such discrepancies were more pronounced during perfusion with hyperpolarizing anions; ClO 4 and I (both more permeable than chloride) produced an important decrease in transepithelial conductance, followed by incomplete reversibility when the perfusion was shifted again to chloride Ringer's. The results are best explained by the presence of weak positive fixed charges, governing anion permeation, at the shunt pathway of the proximal tubule. An analysis of the data allows tentative estimates of shape and size of the sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H. 1961. Internal chloride concentration and chloride efflux of frog muscle.J. Physiol. (London) 156:623

    Google Scholar 

  • Anagnostopoulos, T. 1972. Effects of pH on electrical properties of peritubular membrane and shunt pathway ofNecturus kidney.5 th Int. Congr. Nephrol. (Abstracts), Mexico, Vol. 1, p. 104

    Google Scholar 

  • Anagnostopoulos, T. 1973a. Biionic potentials in the proximal tubule ofNecturus kidney.(London) 233:375

    Google Scholar 

  • Anagnostopoulos, T. 1973b. The partial conductances of limiting membranes in epithelial tissues.J. Theoret. Biol. 42:177

    Google Scholar 

  • Anagnostopoulos, T., Velu, E. 1974. Electrical resistance of cell membranes inNecturus kidney.Pflügers Arch. 346:327

    Google Scholar 

  • Araki, T., Ito, M., Oscarsson, O. 1961. Anion permeability of the synaptic and non-synaptic motoneurone membrane.J. Physiol. (London) 159:410

    Google Scholar 

  • Bentzel, C., Anagnostopoulos, T., Pandit, H. 1970.Necturus kidney: Its responses to effects of isotonic volume expansion.Am. J. Physiol. 218:205

    PubMed  Google Scholar 

  • Bott, P. A. 1962. Micropuncture study of renal excretion of water, K, Na and Cl inNecturus.Am. J. Physiol. 203:662

    PubMed  Google Scholar 

  • Boulpaep, E. L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Am. J. Physiol. 222:517

    PubMed  Google Scholar 

  • Conti, F., Eisenman, G. 1965. The steady-state properties of ion exchange membranes with fixed sites.Biophys. J. 5:511

    PubMed  Google Scholar 

  • Del Castillo, J., De Mello, W. C., Morales, T. 1964. Influence of some ions on the membrane potential ofAscaris muscle.J. Gen. Physiol. 48:129

    PubMed  Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969. Biological membrane: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  • Edelman, A., Anagnostopoulos, T. 1975. The transepithelial p.d. in the proximal tubule of Necturus kidney. 6th Int. Congr. Nephrol. (Abstracts), Florence, Vol. 1, no. 93

  • Eisenman, G. 1965. Some elementary factors involved in specific ion permeation.In: Proc. 23d Intern. Congr. Physiol. Sci., Tokyo. Excerpta Med. Found., Amsterdam, p. 489

  • Frömter, E., Gessner, K. 1974. Free-flow potential profile along rat kidney proximal tubule.Pflügers Arch. 351:69

    Google Scholar 

  • Giebisch, G. 1956. Measurements of pH, Cl and inulin concentration in proximal tubule fluid ofNecturus.Am. J. Physiol. 185:171

    PubMed  Google Scholar 

  • Giebisch, G., Sullivan, L. P., Whittembury, G. 1973. Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the perfusedNecturus kidney.J. Physiol. (London) 230:51

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1967. Resting and spike potentials of skeletal muscle fibers of salt-water elasmobranch and teleost fish.J. Physiol. (London) 190:499

    Google Scholar 

  • Hagiwara, S., Takahashik, K. 1974. Mechanism of anion permeation through the muscle fiber membrane of an elasmobranch fish,Taeniura lymna.J. Physiol. (London) 238:109

    Google Scholar 

  • Hagiwara, S., Toyama, K., Hayashi, H. 1971. Mechanism of anion and cation permeations in the resting membrane of a barnacle muscle fiber.J. Gen. Physiol. 57:408

    PubMed  Google Scholar 

  • Harris, E. J. 1958. Anion interaction in frog muscle.J. Physiol. (London) 141:351

    Google Scholar 

  • Hutter, O. F., Noble, D. 1961. The anion conductance of cardiac muscle.J. Physiol. (London) 157:335

    Google Scholar 

  • Hutter, O. F., Warner, A. E. 1967. Action of some foreign cations and anions on the chloride permeability of frog muscle.J. Physiol. (London) 189:445

    Google Scholar 

  • Moore, L. E. 1969. Anion permeability of frog skeletal muscle.J. Gen. Physiol. 54:33

    PubMed  Google Scholar 

  • Ohashi, H. 1970. An estimate of the proportion of the resting membrane conductance of the smooth muscle of guinea-pig taenia coli attributable to chloride.J. Physiol. (London) 210:405

    Google Scholar 

  • Robinson, R. A., Stokes, R. H. 1970. Electrolyte Solutions. Butterworths Scientific Publications, London

    Google Scholar 

  • Spurway, N. C. 1965. The site of “anion interaction” in frog skeletal muscle.J. Physiol. 178:51P

    Google Scholar 

  • Sutton, L. E. 1965. Interatomic Distances. The Chemical Society, Burlington House, London

    Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1971. Anion interaction at the inhibitory post-synaptic membrane of the crayfish neuromuscular junction.J. Physiol. (London) 212:337

    Google Scholar 

  • Windhager, E. E., Boulpaep, E. L., Giebisch, G. 1967. Electrophysiological studies on single nephrons. 3rd Proc. Int. Congr. Nephrol., Washington, 1966. J. S. Handler, editor. p. 35. S. Karger, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anagnostopoulos, T. Anion permeation in the proximal tubule ofNecturus kidney: The shunt pathway. J. Membrain Biol. 24, 365–380 (1975). https://doi.org/10.1007/BF01868632

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868632

Keywords

Navigation